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Abstract. Tables in scientific papers contain a wealth of valuable knowl-
edge for the scientific enterprise. To help the many of us who frequently
consult this type of knowledge, we present Tab2Know, a new end-to-
end system to build a Knowledge Base (KB) from tables in scientific
papers. Tab2Know addresses the challenge of automatically interpreting
the tables in papers and of disambiguating the entities that they con-
tain. To solve these problems, we propose a pipeline that employs both
statistical-based classifiers and logic-based reasoning. First, our pipeline
applies weakly supervised classifiers to recognize the type of tables and
columns, with the help of a data labeling system and an ontology specifi-
cally designed for our purpose. Then, logic-based reasoning is used to link
equivalent entities (via sameAs links) in different tables. An empirical
evaluation of our approach using a corpus of papers in the Computer Sci-
ence domain has returned satisfactory performance. This suggests that
ours is a promising step to create a large-scale KB of scientific knowledge.

1 Introduction

Often, scientific advancement requires an extensive analysis of pre-existing tech-
niques or a careful comparison with previous experimental results. For instance,
it is common for researchers in Artificial Intelligence (AI) to ask questions like
“Which are the most popular datasets used for graph embeddings?” or “What is
the F1 of BERT on TACRED?”. Finding the answers obliges the researchers to
spend much time in perusing existing literature, looking for experimental results,
techniques, or other valuable resources.

The answers to such questions can be frequently found in tabular form, espe-
cially the ones that describe the output of experiments. Unfortunately, tables in
papers are made for human consumption; thus, their layout can be irregular or
contain specific abbreviations that are hard to disambiguate automatically. It
would be very useful if their content were copied into a clean Knowledge Base
(KB) where tables are disambiguated and connected using a single standard-
ized vocabulary. This KB could assist the users in finding those answers without
accessing the papers or could be used for many other purposes, like categorizing
papers, finding inconsistencies or plagiarized content.
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To build such a KB, we present Tab2Know, an end-to-end system designed to
interpret the tables in scientific papers. The main challenge tackled by Tab2Know
lies in the interpretation of the table, which is a necessary step to build a KB. In
this context, the peculiarities of tables in scientific literature make our domain
quite different from previous work (e.g., [3,23,32]), which mainly focused on
Web tables. First, the interpretation of Web tables benefits from the existence
of large, curated KBs (e.g., DBPedia [5]), which allows the linking of many
entities. In our case, there is no such KB. Second, a large number of Web tables
can be categorized as entity-attribute tables, i.e., tables where each row describes
one entity, and the columns represent attributes [23,32,39]. In our context, we
observed that many tables are of different types, namely they express n-ary
relations, such as the results of experiments. For such tables, existing techniques
designed for entity-attribute tables cannot be reused.

With Tab2Know, we propose a pipeline for knowledge extraction that
includes both weakly supervised learning methods and logical reasoning.
Tab2Know is designed to 1) detect the type of the table; 2) disambiguate the
types of columns, and 3) link the entities between tables. The first operation is
applied to distinguish, for instance, tables that report experiments from tables
that report examples. The second operation recognizes the rows that contain the
headers of the table and disambiguates the columns, linking them to classes of
an ontology. The third operation links entities in different tables.

We implement the first two operations using statistical-based classifiers
trained with bag-of-words and context-based features. These classifiers have an
accuracy that largely depends on the quality and amount of training data. Unfor-
tunately, labeling training data is increasingly the largest bottleneck as it often
requires an expensive manual effort and/or expertise that might not be readily
available. To counter this problem, we propose a weakly supervised method that
relies on SPARQL queries and Snorkel [30]. The SPARQL queries are used to
automatically retrieve samples of a given class, type, etc., while Snorkel resolves
potential conflicts in the prediction with a sophisticated voting mechanism.

After the first two operations are completed, we transform the tables into
an RDF KB and apply reasoning with existentially quantified rules to identify
and link entities in different tables. Reasoning with existentially quantified rules
is a well-known technology for data integration and wrangling [22]. For our
problem, we designed a set of rules that considers the types of columns and
string similarities to establish links using the sameAs relation. Then, we used
VLog [8] to materialize the derivations and link the entities across the tables.

We evaluated our approach considering open access CS papers. In particular,
we evaluated the performance of our pipeline using gold standards and compared
it to another state-of-the-art method. We also applied our method to a larger
corpus with 73k scientific tables. In these tables, we found 312k entities, which
are linked to the table structure and metadata in our large-scale KB.

We release the datasets, gold standards, and resulting KB as an open
resource for the research community at https://doi.org/10.5281/zenodo.3983012.
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The code, ruleset, and instructions to replicate our experiments are also publicly
available at https://github.com/karmaresearch/tab2know.

2 Related Work

Extracting knowledge from tables is a process that can be divided into three main
tasks: table extraction, structure detection, and table interpretation. Once a set of
tables is interpreted, another problem consists of recognizing whether multiple
tables mention the same entities. We call this task entity linking, but this is also
known as entity resolution [28], record linkage [10], or entity matching [6].

Table Extraction. This task consists of recognizing the parts of a PDF/image
which contain a table. Existing methods can be categorized either as heuristic
(e.g., [11,27]) or supervised (e.g., [29]). In this paper, we use the system PDFFig-
ures [11], which is a recent approach based on heuristics with very high precision
and recall (≥ 90%) that is used in Semantic Scholar [1].

Structure Detection. Given as input an image-like representation of a table,
some systems focus on recognizing the table’s structure so that it can be correctly
extracted. A popular system is Tabula (https://tabula.technology/), which rec-
ognizes the table’s structure using rules. More recently, some deep learning meth-
ods based on Convolutional Neural Networks (CNN) [34], Conditional Genera-
tive Adversarial Networks (CGAN) [37], and a combination of a CNN, saliency
and graphical models [20] have been evaluated. The performance of these meth-
ods is good (F1 ≥ 0.95), but not much different from Tabula, which returns a
F1 between 0.86 and 0.96 and has the advantage that is unsupervised.

Table Interpretation. The goal of table interpretation consists of linking the
content of the table to a KB so that new knowledge can be extracted from the
table [24]. In this context, most of the previous work has focused on tables that
represent entity-attribute relations [23]. These tables have rows that describe
entities and columns that describe attributes. Thus, their interpretation consists
of mapping each row to an entity in the KB, and linking each column to a relation
in the KB. Some work has focused only on the first task (e.g., [3]) while others
on the second (e.g., [9,14,25]). The work at [9], in particular, is similar to ours
as it also uses SPARQL queries to create training data. The difference is that
in [9], SPARQL is used to query a rich KB automatically, whereas in our case,
we let users specify queries since we lack such a KB. In terms of methodology,
current work in this field either relies on statistical models, like PGMs [3,24], or
introduces an iterative process that filters out candidates [32,33,39].

As far as we know, the only systems that offer a end-to-end table interpreta-
tion are T2K [32], TableMiner+ [39], and TAKCO [23], but these are designed
for Web tables and rely on a rich KB like DBPedia [5], which we do not have.

The only work that has focused on the interpretation of tables from scientific
literature is [38]. The authors describe an approach to automatically extract
experimental data from tables based on ensemble learning. Although we view this
work as the most relevant to our problem, there are several important differences

https://github.com/karmaresearch/tab2know
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between our work and theirs. First, our approach employs a different set of
technologies and performs entity linking, which is not considered in [38]. Then,
our approach is more general. In fact, [38] focuses only on the extraction of tuples
(method, dataset,metric, score, source) while ours extracts a larger variety of
knowledge. Finally, our approach yields a better accuracy (see Sect. 6).

Entity Linking. The problem of resolving entities in tables has received consid-
erable attention in database research (96+ papers in VLDB, KDD, etc. in 2009–
2014) [10,21,28]. One of the most popular systems is Magellan [21]. Magellan is
a tool to help users to perform entity matching, providing different implemen-
tations of matching and blocking algorithms. Recently, Mudgal et al. [26] have
studied the application of deep learning for entity matching, but concluded that
it does not outperform existing methods on structured data. Other works have
explored the usage of embeddings for this task: For instance, Cappuzzo et al. [7]
have shown how we can construct embeddings from tabular data. Another line
of work has been focusing on crowds, e.g., [12] and citations therein, while other
works have focused on entity resolution using knowledge bases (e.g., LINDA [6]).
Our work differs from the ones above because they either focus on highly struc-
tured table sets or require the existence of KBs (which we do not have). More-
over, another important difference is that we take a declarative approach with
rules. Rules are useful because they can be easily debugged/extended directly
by domain experts, and they can be integrated with ontological reasoning.

Other Related Works. We mention, as further related work, the systems
by [13] and TableNet [17] which focus on searching for tables related to a given
query. Other, less relevant works focus on extracting and searching for figures
on papers [35,36]. These works complement our approach and can further assist
the user to find relevant knowledge in papers.

3 Overview

Our goal is to construct a clean and large KB from the content of tables in sci-
entific papers stored as PDFs. To do so, we need to address two main challenges:
first, we must resolve the ambiguities that might arise during the noisy extrac-
tion process and reduce the error rate as much as possible. Second, we must
counter the problem that we lack both: 1) a pre-existing KB that can guide the
extraction process and 2) a large amount of training data. We must, in other
words, find a way to build a KB from scratch.

Our proposal is a pipeline with three main tasks, as shown in Fig. 1:

• Task 1: Table Extraction. The system receives as input an image-like
representation of a table, recognizes its structure, and returns its content as a
CSV file. For this task, we use external tools. We provide more details below;

• Task 2: Table Interpretation. The system processes the CSV to recognize
the headers and the type of the table. Then, it disambiguates the columns by
mapping them to ontological classes. We describe this task in Sect. 4;
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Table Extraction1

Ontology

Table Interpretation2

SPARQL Queries

SPARQL Query 1
SPARQL Query 2
SPARQL Query 3

Input: PDF Figure

APIs

Output: KB (with linked entities)

3 Entity Linking

VLog
Rule 1
Rule 2
Rule 3

Rules

Assets

Header detection

Fig. 1. Tab2Know: system overview

• Task 3: Entity Linking. Finally, the system performs logical-based reason-
ing to link the entities across tables. We describe this task in Sect. 5.

While in principle our method can be applied to scientific papers in any
domain, we restrict our analysis to papers in Computer Science, which is our
area of expertise. In particular, we consider Open Access papers and have been
published in top-tier venues in subfields like AI, semantic web, databases, etc.

Before we describe the components, we describe two additional assets that
we use for different purposes. The first one is an ontology constructed annotating
a sample of random tables. A first version of this ontology contained 44 classes
organized in a hierarchy with a maximum depth of 6. After further annotations,
we decided to simplify it to a set of 27 classes (depth 3) for which we had sub-
stantial evidence in our corpus. The final ontology has 4 root classes: Example,
Input, Observation, and Other. These classes define general table types.
Then, the subclasses describe column types, e.g., Dataset, Runtime, or Mean.
As an example, one of the longest chains is Recall � Metric � Observation
with � denoting the subclass relation. The ontology is serialized in OWL using
WebProtégé [19] and is publicly available as resource.

The second asset is an external KB that contains metadata of the papers,
namely Semantic Scholar [1]. We access it using the provided APIs to retrieve
the list of authors, the venue, and other contextual data.

Table Extraction. Our input consists of a collection of papers in PDF format.
The first operation consists of launching PDFFigures [11] to extract from the
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PDFs the coordinates of tables and related captions. We use the coordinates
to extract an image-like representation of the tables, see for instance the table
reported in Fig. 1. Then, we invoke Tabula, which is a tool also used in similar
prior works [38], to recognize the structure of the tables using their coordinates
and to translate them into CSV files.

After the images are converted, we perform a näıve conversion of the tables
into RDF triples. We assign a URI to every table, column, row, and cell and link
every cell, row, and column to the respective table with positional coordinates.

Example 1. Consider the table in Fig. 1. We report below some triples that are
generated while dumping its content into RDF.

PREFIX : http://xzy/tab2know
:Table1 :hasRow :Table1-r1 :Table1 :hasCol :Table1-c1

:Table1-r1 rdf:type :Row :Table1-c1 rdf:type :Column

:Table1-r1 :rowIndex 1^^〈xsd:int〉 :Table1-c1 :colIndex 1^^〈xsd:int〉
:Table1-r1c1 :cellOf :Table1 :Table1-r1c1 rdf:type :Cell

:Table1-r1c1 :rowIdx 1^^〈xsd:int〉 :Table1-r1c1 :colIdx 1^^〈xsd:int〉
:Table1-r1c1 rdf:value "Method name" :Table1-r2c1 rdf:value "USTB TexStar"

...

As we can see from the triples in Example 1, the KB generated at this stage
is a direct conversion of the tabular structure into triples. Despite its simplicity,
however, such a KB is already useful because it can be used to query the n-ary
relations expressed in the tables in combination with the papers’ metadata. For
instance, we can write a SPARQL query to retrieve all the tables created by one
author with a caption containing the word “results”, or to retrieve the tables
containing “F1” and which appear as proceedings of a certain venue.

The main problem at this stage is that we can only query using string sim-
ilarities, which severely reduces the recall. For instance, a query could miss a
column titled Prec. if it searches for Precision. The next operation, described
below, attempts to disambiguate the tables to create a KB that is more robust
against the syntactic diversity of the surface form of their content.

4 Table Interpretation

Tab2Know performs three main operations to interpret the tables. First, it iden-
tifies the rows with the table’s header (Sect. 4.2). Then, it detects the type of the
table (Sect. 4.3). Finally, it maps each column to an ontological class (Sect. 4.4).
First, we describe the procedure to obtain training data.

4.1 Training Data Generation

Statistical models are ideal for implementing a table interpretation that is robust
against noise. However, their accuracy depends on high-quality training data,
which we do not have (and it is expensive to obtain such data with human anno-
tators). We counter this problem following the paradigm of weak supervision.
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The idea is to employ many annotators, which are much cheaper than a human
expert but also much noisier. These annotators can deliver a large volume of
labeled data, but the labels might be incorrect or conflicting. To resolve these
problems, we can either rely on procedures like majority voting or train a ded-
icated model to computed the most likely correct label. In the second case, we
can use Snorkel, one of the most popular models for this purpose [30].

Snorkel’s goal is to facilitate the learning of a model θ that, given a data
point x ∈ X , predicts its label y ∈ Y. Instead of training θ by fitting it to a
set of pre-labeled data points, as it would happen in a traditional supervised
approach, Snorkel trains an additional generative model with unlabeled data
and uses pre-labeled data only for validation and testing. For these two tasks,
the amount of pre-labeled data can be much smaller, and thus cheaper to obtain.
Then, the generative model can be used to train θ.

Snorkel introduces the term labeling function to indicate a data annotator
with possibly low accuracy. A labeling function λ : X → Y ∪ {∅} can encode a
heuristic or be a simple predictor. It receives a data point x in input and either
returns a label in Y or abstains, i.e., returns ∅. Given m unlabeled data points
and n labeling functions, Snorkel applies the labeling functions to the data points
and computes a matrix M ∈ (Y ∪ {∅})m×n.

Then, Snorkel processes M to compute, for each xi where i ∈ {1, . . . , m},
a probabilistic training label ỹi. The processing consists of creating a generative
model using a matrix completion-style algorithm over the covariance matrix of
the labels [31]. Then, this model can be used to generate labeled data for training
θ. In this work, we considered models such as Näıve Bayes (NB), Support Vector
Machine (SVM), and Logistic Regression (LR) [4] to implement θ. We have also
experimented with deeper learning models, but we did not obtain improvements
because such models are more prone to overfitting if training data is scarce.

The effectiveness of Snorkel largely depends on the number and quality of
the labeling functions. In our context, we implemented them using SPARQL
queries, which are supposed to be entered by a (human) user. SPARQL queries
are ideal because they can assign labels to many data points at once. For each
query Q, we create a labeling function that receives in input a column/table x
and returns an assigned class label (e.g., a table type, or the class of a column)
if x is among the answers of Q. Otherwise, the function abstains.

Example 2. We show below an example of a SPARQL query that labels columns
with the class F1 if they have a header cell with value “f1” and contain any cell
with a numeric type.

select distinct ?column where {
?table :column ?column ; :cell ?cell .

?column :hasTitle "f1" . ?cell rdf:type xsd:decimal . }
Clearly, this query is not a good predictor if taken alone, but if we combine

its output with the ones of many other functions, then the resulting predictive
power is likely to be superior. This is the key observation used by Snorkel.
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Fig. 2. Examples of tables of each category

In our pipeline, we execute all the user-provided SPARQL queries and then
use their outputs to build the matrix M for a large number of data points. Next,
we train the final discriminative model θ. We compute two different θ: One to
generate training data for predicting the tables’ types (Sect. 4.3) while the other
is for predicting the columns’ types (Sect. 4.4).

4.2 Table Header Detection

First, we identify the rows that define the headers. To this end, we can either
always select the first row as header or employ more sophisticated methods to
recognize multi-row headers, like [16]. We observed that a simplified unsupervised
version of [16] yields a good accuracy on our dataset. We describe it below.

Our procedure exploits the observation that header rows differ significantly
from the rest of the table with respect to character-based statistics. Hence,
we categorize characters either as numeric, uppercase, lowercase, space, non-
alphanumeric, or other. Then, for each column, we count how many characters
of each class (e.g., numeric) appear in its cell. We compute the average count per
class across the column and use these values to determine the standard deviation
for each cell. The outlier score of a row r is determined as the average of the
standard deviations of all classes of its cells. If the outlier score or r is greater
than τ (default value is 1, set after cross-validation), then r is marked as header.

4.3 Table Type Detection

In scientific papers, tables are used for various reasons. We classified them in the
classes Observation, Input, Example, and Other (See Fig. 2 for examples).

Knowing the class of a table is useful for reducing the search space when
the user is interested in some specific content (e.g., The F1 measure is typically
not mentioned in tables of type Example). Moreover, we can also use this
information as a feature for the column disambiguation.
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We predict the table type with a statistical classifier. As features for the clas-
sifier, we selected bags-of-ngrams of lengths 1 to 3 that occurred more than once,
weighted by their TF-IDF score. Tables often contain abbreviations and domain-
specific symbols that address an audience of experts. These provide strong hints
for determining the type of the table; thus we consider the ngram in the content
of the cells and the table caption. We also included other numerical features. In
particular, we use the fraction of numeric cells in the table and the minimum,
maximum, median, mean and standard deviation of numerical columns. This
resulted in a total of 5804 features.

To train the models, we first ask the users to specify some SPARQL queries
which will be used by Snorkel to create a large volume of training data. Then,
we experimented with three well-known types of classifiers: NB, SVM, and LR.
Eventually, we selected LR because it returned the best performance on the
noisiest dataset.

4.4 Column Type Detection

Finally, the interpretation procedure attempts at linking the columns to one of
the available classes in our ontology. The ontology includes popular classes that
we identified while annotating a sample (e.g., Dataset, Runtime,. . . ), while
infrequent classes with very few columns are mapped to the class Other. In
general, we assume that a column is untyped if it is mapped to Other.

For this task, we also used bag-of-ngram features of lengths 1 to 3, extracted
from the table caption, the column header cells, the header cells of the other
columns, and the column body. We restricted the set of ngrams to only the top
1000 most frequent per extraction source. Additionally, we added features about
the numerical columns, identical to those in Sect. 4.3. This resulted in a total of
3076 features.

Similarly as before, we first rely on user-provided SPARQL queries to gen-
erate training data. Then, we considered NB, SVM, and LR as classifiers. Once
the models for the table and column types are trained, we use them to predict
the types of every table and column in our corpus. Finally, we use the predicted
class to annotate the table/column in the KB with a semantic type.

5 Entity Linking

Rationale. Predicting the types of tables and columns is useful to map the
table schema into a meaningful n-ary relation. The last operation in our pipeline
consists of associating cells to entities so that we can populate the n-ary relations
with new instances.

We start by assuming that every non-numerical cell contains an entity men-
tion, which implies the existence of one entity. This assumption is not unre-
alistic. Indeed, if we look at the table in Fig. 1, then we see that every non-
numerical cell that is not in the table’s header refers to an entity (e.g., the cell
“USTB TextStar” refers to an algorithm to detect text inside images).
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In practice, it is likely that some entities are mentioned multiple times. This
consideration motivates us to discover whether two entity mentions (possibly on
different tables) refer to the same entity. When we do so, then we gain more
knowledge about the entity and reduce the number of entities in the target KB.
We call this task entity linking because we are linking, with the sameAs relation,
equivalent entities across tables.

With this goal in mind, we start by assuming that every entity has the
content of the corresponding cell as label. For instance, the entity mentioned in
the cell with “USTB TextStar” has “USTB TextStar” as label. Using the labels
to determine equality can be surprisingly effective in practice, but it is not an
operation without risks. In fact, there are cases where different entities have the
same label, or the same entity has multiple labels. These cases call for a more
sophisticated procedure to discover equalities.

Reasoning. Reasoning with existentially quantified rules is an ideal tool to
establish non-trivial equalities between entities since it was already previously
used for data integration problems [15,18]. For our purposes, we are interested
in applying two types of rules: Tuple Generating Dependencies (TGDs) and
Equality Generating Dependencies (EGDs). We describe those below.

Consider a vocabulary consisting of infinite and mutually disjoint sets of
predicates P, constants C, null values N , and variables V. A term is either a
constant, a variable, or a null value. An atom is an expression of the form p(�x)
where p ∈ P, �x is a tuple of terms of length equal to the arity of p, which is
fixed. A fact is an atom without variables. A TGD is a rule of the form:

∀�x, �y.(B → ∃�z.H) (1)

where B is a conjunction of atoms over �x and �y while H is a conjunctions of
atoms over �y and �z. Let x, y ∈ �x. A EGD is a rule of the form:

∀�x.(B → x ≈ y) (2)

Intuitively, TGDs are used to infer new facts from an existing set of facts
(i.e., the database). Their execution consists of finding in the database suitable
replacements for the variables in �x and �y that render B a set of facts in the
database. Then, these replacements and mappings from �z to fresh values in N
are used to map H into a set of facts, which is the set of inferred facts.

EGDs are used to establish the equivalence between terms. Their execution
is similar to the one of TGDs, with the difference that whenever they infer that
a ≈ b, where a and b are terms and a < b according to a predefined ordering,
then every occurrence of b in the database is replaced with a.

The chase [15] is a class of forward-chaining procedures that exhaustively
apply TGDs and EGDs to infer new knowledge with the rules. A formal definition
of various chase procedures is available at [2]. In this work, we apply the restricted
chase, one of the most popular variants. It is known that sometimes the chase
may not terminate, but this is not our case since we use an acyclic ruleset [15].
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We first map the content of the KB extracted from the tables into a set of
facts. For example, the first two RDF triples in Example 1 map to the facts
hasRow(Table1,Table1-r1) and hasCol(Table1,Table1-c1) respectively.

Then, we use the two TGDs

type(X, Column) → ∃Y.colEntity(X,Y ) (r1)
type(X, Cell) → ∃Y.cellEntity(X,Y ) (r2)

to introduce fresh entities for every column and cell in the tables. The predicates
colEntity and cellEntity link entities (Y ) to the columns and cells respectively.
Note that we use null values to represent entities, thus we are simply stating
their existence with some placeholders. To reason and discover whether two
different entities are equivalent, we employ EGDs. In particular, we use five
EGDs, reported below:

ceNoTypLabel(X,L), ceNoTypLabel(Y,L) → X ≈ Y (r3)
eNoTypLabel(X,C,L), eNoTypLabel(Y,C,L) → X ≈ Y (r4)

eTableLabel(X,T, L), eTableLabel(Y, T, L) → X ≈ Y (r5)
eTypLabel(X,S,L), eTypLabel(Y, S,M), STR EQ(L,M) → X ≈ Y (r6)

eAuthLabel(X,A,L), eAuthLabel(Y,A,M), STR EQ(L,M) → X ≈ Y (r7)

where ceNoTypLabel, eNoTypLabel, eTableLabel, eTypLabel, and eAuthLabel
are auxiliary predicates that we introduce for improving the readability. We
describe their intended meaning as follows. The fact ceNoTypeLabel(X,L) is
true if colEntity(Y,X) is true and Y is an untyped column with header value
L; eNoTypeLabel(X,C,L) is true if X is an entity with a label L that appears
in a cell inside an untyped column associated to entity C; eTableLabel(X,T, L)
is true if entity X with label L appears in table T ; eTypeLabel(X,S,L) is true
if entity X with label L appears in a column with type S; eAuthLabel(X,A,L)
is true if entity X with label L appears in a table authored by author A.

The rationale behind each EGD is the following:

• Rule r3 : This rule is introduced to disambiguate untyped columns. Since we
were unable to discover the columns’ types and assigned them to the class
Other, we use the value of the header to determine whether they contain the
same type of entities. Thus, the rule will infer that their associated entities
are equal if they share the same header.

• Rule r4 : This rule infers that two entities are equal if they appear in the
same group of columns (created by r3), and they share the same label.

• Rule r5 : This rule encodes a simple heuristics, namely that if two entities
with the same label appear in the same table, then they should be equal,
irrespective of the type of columns where they appear.

• Rule r6 : This rule disambiguates entities in columns of the same type. Here,
we no longer consider the header of the column (as done by r3 and r4) but
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compare the entities’ labels. After experimenting with approximate string
similarity measures, like the Levenshtein distance, we decided to use a case
insensitive string equality (STR EQ) to reduce the number of false posi-
tives. Case-insensitive similarity is more expensive than an exact string match
because it requires dictionary lookups. We use it here and not in r3, r4, and
r5 because the comparisons are done only between entities of the same type.

• Rule r7 : This rule implements another heuristic which takes into account the
authors of the paper. It assumes that two entities are equal if they appear
in two tables authored by the same author (we used the IDs provided by
Semantic Scholar to disambiguate authors) and have the same label.

Once the reasoning has terminated, we introduce a new entity for each differ-
ent null value and add RDF triples that link them to the corresponding cells and
columns. Notice that the list of presented rules is not meant to be exhaustive.
The ones that we describe show how we can exploit the predictions computed in
the previous step (r6) and external knowledge (r7) relying on string similarity
when no extra knowledge is available. We believe that additional EGDs, possibly
designed to capture some specific cases, can further improve the performance.

6 Evaluation

Inputs. We considered two datasets: A corpus of tables that we manually con-
structed, and the dataset by [38], which is called Tablepedia.

Our corpus of tables contains 142,966 open-access PDFs distributed by
Semantic Scholar. These papers appear in the proceedings of top venues in CS
(the full list of venues is reported in our data repository). From these papers,
we extracted 73,236 tables with PDFFigures and Tabula. These tables have
6.23 rows on average (SD = 6.58), and they have 7.11 columns (SD = 6.27).
We converted the tables into RDF, resulting in a KB with 23M triples. We used
Blazegraph to execute the SPARQL queries. After adding the table types and
column types, we loaded the KB into VLog [8] to perform rule-based reasoning.

Tablepedia contains 451 tables, which have the columns annotated only
with three classes: Method, Dataset, and Metric. To use this dataset in our
pipeline, we created a graph representation of the tables without the annota-
tions. Then, we translate the 15 seed concepts that are used in [38] to create
the tables into labelling queries, so that we could apply Snorkel using both
datasets. In contrast to Tablepedia, our annotated dataset maps to a much
larger number of classes. Notice that the most frequent column types in our
dataset (Observation, Accuracy, and Count), do not occur in Tablepedia.

Training Data. To create the training data for weak supervision, two human
annotators (one PhD and one bachelor CS student) wrote SPARQL queries for
labeling with the aid of a web interface designed for this purpose. The annotators
examined the results of these queries on a sample of 400 tables, ensuring that
the queries represented heuristics that covered a reasonable amount of the data.
The quality of the SPARQL queries is fundamental to produce a good training
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Fig. 3. Table interpretation with Näıve Bayes (NB), Support Vector Machine (SVM),
Logistic Regression (LR). MV is Majority Voting, AUC is area under the curve

dataset, and hence return good predictions. It is crucial that the queries have
large coverage to avoid introducing a bias and to increase the training data size.
For instance, if the queries label only a few tables, then the model will not receive
enough evidence. To this end, we encouraged them to write queries which also
matched a large number of items on the entire set of tables, and that did not
excessively overlap. This resulted in 39 queries for labeling 98,570 tables with
the corresponding type and 55 queries for labeling 165,302 columns.

Gold Standards. To test the performance, the same human annotators as
before manually annotated 400 random tables. The tables in this sample have,
on average, 9.92 rows (SD 7.28) and 5.07 columns (SD 3.20). These tables were
annotated with the number of header rows, and table and column types. This
process resulted in 321 table type and 873 column type annotations (excluding
Other). Most tables were annotated with the Observation class (258), followed
by Input (50); the smallest class was Example (13). The human annotators
have annotated the table and column types looking at the images of the tables,
the table captions, and possibly the full paper in case it was still not clear. The
annotators have annotated the tables independently and resolved the conflicts
together whenever they disagreed. After the first round of annotation using the
first version of the ontology (44 classes), we marked as infrequent all classes with
fewer than 10 annotations. These classes were removed from the ontology and
the annotations were redirected to Other. For the Tablepedia dataset, we used
the annotations provided by the original authors.

We highlight two aspects of our gold standard that have a direct impact on
the evaluation. First, in contrast to [38], we decided not to filter out tables that
were incorrectly extracted by Tabula. This makes our corpus more challenging
because it might contain errors due to incorrect parsing. Second, our choice of
merging infrequent column types into the type Other ensures that for each
type there is always some evidence, but it has the downside that some classes in
the long tail are ignored. Interpreting such types is an additional challenge that
deserves a thorough study in future work.
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6.1 Table Interpretation

Figure 3a reports the accuracy of our header detection heuristic compared to
the baseline that consists of always selecting the 1st row. We observe that our
technique has superior performance, although it still makes some mistakes.

In Fig. 3b, we report the performance of our table type detection models on
our gold standard. In general, we observe that all three models return reasonably
high performance. Näıve Bayes (NB) outperformed the others, especially in terms
of F1 and AUC. Thus, we decided to select this as the default one for this task.

In Fig. 3d, we report the classifiers’ performance for the column types on
our gold standard, while Fig. 3e reports the same for Tablepedia. In both cases,
we see that LR performs best, likely due to the combined importance of textual
and numeric features for this task. Additionally, we observe that our model
significantly outperforms the model of [38] on their dataset. If we compare the
scores between the two datasets, then we see that they are significantly lower
with our dataset. The reason is two-fold: First, the authors of Tablepedia have
manually removed much noise from the extracted tables while no pre-processing
took place on our dataset. Second, our dataset contains many more classes than
Tablepedia, which makes it more challenging to predict.

Finally, we studied the added value of using Snorkel and compared it with
a simpler majority voting (MV), i.e., labeling a data point using the most
frequently predicted class. In Fig. 3c, we report both the accuracy obtained
with majority voting and with Snorkel with various types of predictions. While
Snorkel outperforms MV for the table type detection and column type detec-
tion in Tablepedia, MV is better when detecting the column types of our corpus.
This was expected because, in this last case, our labeling functions (i.e., SPARQL
queries) have frequently abstained. Consequently, M has a low label density, and
whenever this occurs, Snorkel is unable to compute optimal weights that diverge
from MV [30].

6.2 Entity Linking

Figure 4a reports the number of entities before and after the execution of the
EGD rules. The left side compares the number of entities that refer to columns
before and after r3 was executed. As we can see, r3 merged many entities, and
this reduced the number of distinct entities of 65%. The right side shows the
decrease of entities that refer to cells after the execution of rules r4, . . . , r7. Here,
the bar titled ri reports the number of entities if only ri is executed while the
right-most column indicates the number of entities when all rules are included.
We observe that every EGD contributes to merge some entities, but the best
results are obtained when all EGDs are activated: here, the EGDs merged about
55% of the entities.

To evaluate the quality of entity links, we manually evaluated a sample of
100 merged entities. For each sampled entity, we first determined whether the
entity was a meaningful one. From this analysis, we discovered that 65% of the
entities are correct while the remaining have either nonsensical labels or some
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Fig. 4. Analysis of the performance of entity linking

text resulted from errors of Tabula. In Fig. 4b, we report examples of good and
bad entities with their number of links.

Then, we looked at the cells which referred to the entity, which were 541
in total. Since the rules could make a mistake and link two cells to the same
entity although they meant different ones, we evaluated, for each entity, the
precision of its links. Given the set of n cells that link to the same entity, the
precision is computed by taking the cardinality of the largest subset of cells that
refer to the same concept and divide it by n. For instance, consider an entity X
with label Y which is linked to n = 4 cells. Three of these cells contain the text
Y but refer to a dataset while one cell contains Y but refers to something else.
In this case, the precision for X is 3

4 . In our sample, the average precision over
the meaningful entities was about 97%, which is a relatively high value. This
indicates that reasoning produced an accurate entity linking.

7 Conclusion

Summary. We presented Tab2Know, an end-to-end system for building a KB
from the knowledge in scientific tables. One distinctive feature of Tab2Know is
the usage of SPARQL queries for weak supervision to counter the lack of training
data. Another distinctive feature is the usage of existentially quantified rules to
link the entities without the help of a pre-existing KB.

Our pipeline effectively combines statistical-based classification and logical
reasoning, exploiting SPARQL and remote KBs like Semantic Scholar. Therefore,
we believe that ours is an excellent example of how semantic web technologies,
statistical- and logic-based AI can be used side-by-side.

Future Work. Although our results are encouraging, and the current KB is
already able to answer some non-trivial queries, future work is required to
improve the performance. First, a more accurate table extraction procedure is
needed to improve the accuracy of table interpretation and entity linking. More-
over, our current ontology links classes only via �. It is interesting to study
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whether new relations can lead to better extractions. For instance, specifying
the range of some classes could be used to exclude mappings to columns with
incompatible values. Finally, a natural continuation of our work is to further
research whether additional rules can return a better entity linking. In partic-
ular, we believe that rules that take into account the context of the table or
co-authorship networks will be particularly useful.

To conclude, we believe that Tab2Know represents one more step that brings
us closer to solve the problem of constructing an extensive and accurate KB of
scientific knowledge. Such a KB is a useful asset for assisting the researchers,
and it can play a crucial role in turning the vision of open science into a reality.
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