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Abstract

Amidst the climate crisis, the massive introduction of renewable en-
ergy sources has brought tremendous challenges to both the power
grid and its surrounding markets. As datacenters have become ever-
larger and more powerful, they play an increasingly significant role in
the energy arena. With their unique characteristics, datacenters have
been proved to be well-suited for regulating the power grid yet cur-
rently provide little, if any, such active response. This problem is
due to issues such as unsuitability of the market design, high com-
plexity of the currently proposed solutions, as well as the potential
risks thereof. This work aims to provide individual datacenters with
insights on the feasibility and profitability of directly participating in
the energy market. By modelling the power system of datacenters, and
by conducting simulations on real-world datacenter traces, we demon-
strate the substantial financial incentive for individual datacenters to
directly participate in both the day-ahead and the balancing markets.
In turn, we suggest a new short-term, direct scheme of market partici-
pation for individual datacenters in place of the current long-term, in-
active participation. Furthermore, we develop a novel proactive DVFS
scheduling algorithm that can both reduce energy consumption and
save energy costs during the market participation of datacenters. Also,
in developing this scheduler, we propose an innovative combination of
machine learning methods and the DVFS technology that can provide
the power grid with indirect demand response (DR). Our experimental
results strongly support that individual datacenters can and should di-
rectly participate in the energy market both to save their energy costs
and to curb their energy consumption, whilst providing the power grid
with indirect DR.

Index Terms—Datacenter modelling, cloud simulation, smart grid, energy
market, demand response, frequency scaling, DVFS scheduling, machine
learning.
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I
Introduction

Taking their toll at a rising speed over the past decades, environmental problems
such as global warming have fast become a worldwide focal point [22], so much
so that even the COVID-19 pandemic can barely arrest the development of this
alarming trend [185]. To combat this exacerbating issue, remedies such as emission
limits, carbon taxes, and perhaps most importantly, ambitious renewable energy
targets adopted in 2015 [123] and enhanced in 2021 [126], have been introduced.
As a result of such a push towards sustainability, the energy market has become
increasingly volatile, bringing both challenges and opportunities to the ever-larger
energy consumers, datacenters.

Smart Grid. Despite the fact that there is virtually no cost in the production
of renewable energy as they are free of charge from nature, the substantial oper-
ational costs induced by its huge intermittency and stochasticity, however, greatly
impedes the continuous penetration of renewable energy sources into the power
grid [103]. Consequently, large numbers of expensive and carbon-intensive system
operating reserves, which hinge on more reliable energy sources like petroleum or
even diesel, are often required as hot/cold standby reserves to back up renewables
in order to maintain the equilibrium of the power grid (§2.4). In addressing the
above challenges, the power grid is becoming more and more intelligent (Figure
1.1) — the smart grid [49]. Such recent advances in functions of the smart grid en-
able real-time, fluent interactions and coordination between energy producers and

1
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Figure 1.1: Functions of the smart grid.

consumers, improving demand-side management (DSM) [168, 38].

Demand Response. The smartness of the grid, however, is hitting some lim-
its due to the uncertainty caused by the massive introduction of renewable energy
sources. One relatively recent, yet promising form of DSM is demand response
(DR), which has been extensively explored in existing literature (e.g., [72, 186,
84, 93, 184, 153, 2]). In general, based upon the response time, DR programmes
can be classified into two broad categories, direct and indirect control. The di-
rect approach responds to requests and signals from the power grid quickly, which
provides system operators with accurate and fast control over the power grid (dif-
ferent levels of DR are introduced in Section 2.4.2). Thus, most of the ancillary
services opt to direct DR control. Conversely, it is computationally and commu-
nicatively more intensive. In contrast, indirect DR is cheaper and more flexible but
embodies a greater degree of uncertainty. As opposed to relying upon the direct
requests from the system operators or upon constant monitoring of the power grid,
it financially incentivizes prosumers to modify their energy consumption and/or
production following signals from the energy markets and/or local utilities. Al-
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Figure 1.2: Demand response in the smart grids.

though unlike the frequency level of the power grid that directly reflects the status
of the current demand, energy prices of the financial markets are good indicators
and predictors of the demand-supply balance. Thus, indirect DR has the potential
to effectively reduce the market volatility caused by wind and solar energy genera-
tion, mitigate network problems (e.g., congestion, voltage), and respond to failures
(e.g., avoiding blackout), helping both the customers and the power grid dramat-
ically reduce costs [145]. Although many grids currently do not have congestion
problems, as more distributed solar generation and more erratic consumption re-
sulted from mobility, e.g., electrical vehicles (EVs), are introduced, a large fraction
of the distribution grids is expected to suffer from congestion in the near future
[70]. To tackle this, intensive research has been conducted to explore the interre-
lationship between the mobility of EVs and DR, e.g., using vehicle-to-grid (V2G)
technology [172, 89, 169]. Throughout the years, people have also resorted to re-
frigerators [117], fans [166], laundry machines and dishwashers [133, 129], or even
boilers [45], searching for DR resources to ameliorate the intensive demand during
peak times, During these periods, the energy delivery is much more costly since
less efficient energy plants (usually powered by fossil fuels) are employed.

Page 3 of 142



CHAPTER 1. INTRODUCTION 1.1. PROBLEM STATEMENT

1.1 Problem Statement

Over the past decades, datacenters have grown ever larger and more powerful [118].
According to recent reports, datacenters consume more than 1.5% of global elec-
tricity use [100, 118, 178], and, with a growth rate of 10–12% per year [160, 19, 58,
95], this figure is expected to grow to 3% by 2025 [162]. In the US, about 2.2–3.5%
electricity use can be attributed to datacenters [95]. Similar phenomenons appear
in the Netherlands, where the power consumption of datacenters amounts to 2.7
billion kWh by 2020, which is 2.3% of the total Dutch energy use [43]. A decade
ago (2011), Google datacenters already use almost 260 MW of power, exceeding
the consumption level of Salt Lake City [131]. Similarly, a single datacenter of
Microsoft in Washington DC consumes 48 MW of power, which is the equivalent
of around 40k households in the US [168]. Due to their carbon footprints and en-
ergy consumption, datacenters have become a front-line target in the battle against
climate change [64].

1.1.1 Opportunities

The increasing capacity of datacenters may well be a blessing in disguise for the
power grid. A well-managed datacenter of 30 MW has approximately the same
capability for regulating the power grid as huge energy storage of 7 MWh [172].
Besides its capacity, unlike other subjects such as lighting and residential power,
datacenters feature its elastic load. In other words, datacenters are capable of curb-
ing their power demand without service degradation. Also, many Cloud service
providers employ spot pricing mechanisms to manage demands (e.g., [73]). To
put this into perspective, a study from Lawrence Berkeley National Laboratory
(LBNL) shows that 15% of the load can be shed within 15 minutes without ad-
justing temperatures or any other building managements [58]. Additionally, the
flexibility of datacenters can be leveraged at a finer-grained level through energy-
saving techniques such as power capping [32] and dynamic voltage & frequency
scaling (DVFS) [99]. Note that DR is not mean to save energy, but DVFS can. This
enabling configuration will be described in detail later in Section 2.3. Furthermore,
datacenters are built for extremely reliable and available services. For instance,
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Figure 1.3: Characteristics of datacenters.

two availability classes to which most modern datacenters belong are Tier III and
Tier IV. Datacenters that fall into the former category insure a 99.982% availabil-
ity, and for the latter, the figure is 99.995% [114]. To accomplish promised uptime
and performance guarantees, datacenters generally have a considerable amount of
redundancy throughout their power systems, as well as large battery capacities in
their primary power support. Lastly, datacenters are complex but highly automated
systems. Ubiquitous monitors and controls empower datacenters’ participation in
the DR programme. Therefore, datacenters are well-suited candidates for DR pro-
grammes [31, 172].

1.1.2 Challenges

Albeit with great potentials of taking part in DR programmes, datacenters nowa-
days provide the power grid with little, if any, response to the power grid [58,
60, 109, 108]. Firstly, the current market designs [85, 176] and DR programmes
[7, 145] (i) are not particularly suitable for datacenters and (ii) can barely fully ex-
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tract the flexibility of datacenters [109]. Secondly, datacenters may incur charges
if no response is offered during DR programmes. No profit would be produced
either if the peak in energy demand did not happen during the coincident periods.
Thirdly, the proposed DR strategies for datacenters often require cooperation be-
tween the energy market, geographically distributed datacenters, and their utility
companies [138, 110, 57, 170, 182, 168, 135, 138, 110, 106, 57, 170, 182]. In other
words, they can hardly be carried out without structural changes to the energy mar-
ket and/or substantial adjustments in datacenter operations. Hence, the complexity
of the orchestration and the potential risks therein hinder the participation of dat-
acenters in the power grid. Furthermore, experimenting, testing, and evaluating
energy-aware techniques tend to be costly or sometimes even unrealistic in large-
scale, modern datacenters. This could lend hesitancy for datacenter shareholders
to embrace energy-saving techniques, e.g., DVFS since the critical guarantee of
performance and availability specified in their service-level agreement (SLA) al-
ways takes precedence over unknown benefits brought by enabling energy-saving
configurations. This challenge further imposes potential risks on datacenters when
participating in the DR programmes. One way of bridging this gap is to measure
energy consumption at the hardware level, for example, installing system/compo-
nent power meters to monitor the power usage [27, 51, 39]. Although such a direct
approach is becoming a common practice, it only applies to facilities that have al-
ready been built [47]. Consequently, it is not portable, scalable or informative for
future planning and responsive scheduling. Another method is to employ software
instruments, specifically, datacenter simulators, to model the energy consumption
of thousands of servers as well as non-IT infrastructure, e.g., cooling and ancillary
equipment. In comparison to methods at the hardware level, datacenter simulators
are more flexible, reproducible and cost-effective, playing an instrumental role in
facilitating energy-aware decision-making [80]. As a result, datacenter simulation
has been widely adopted for both academic research and industrial use [8, 143].

1.2 Research Questions

As the first step towards addressing the aforementioned challenges, this work aims
to provide individual datacenters with insights on the feasibility and profitability of
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Figure 1.4: Aerial view of the project.

directly participating in the energy market whilst offering indirect DR to the power
grid (Figure 1.4 demonstrates an aerial of this project). To achieve this objective,
we put forwards the statement of this thesis:

Thesis Statement — Individual datacenters can and should directly participate in
the energy market both to save their energy costs and to curb their energy consump-
tion, whilst providing the power grid with indirect DR.

To offer evidence for the thesis statement, we raise the main research question
(MRQ) followed by a sequence of research questions (RQs).

MRQ How feasible and beneficial is it for individual datacenters to directly par-
ticipate in the energy market whilst providing the power grid with indirect
DR?

1.2.1 Research Question 1

To answer the MRQ, we need to first estimate the energy consumption of datacen-
ters. There are, however, a myriad of factors that influence the energy consumption
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of datacenters. To name a few such factors: different topologies of the datacenters,
various types of hardware as well as many configurations thereof. In an effort to
overcome this challenge, we resort to whole power system modelling in order to
capture the heterogeneity of those factors. To this end, an energy resource chain,
starting from the power source and ending at the IT infrastructure, is needed. This
resource chain passes through several supporting subsystems and components of
datacenters, for example, the automatic transfer switches (ATSs), the uninterrupted
power supply (UPS) systems, and the floor/rack power distribution units (PDUs).
Inside the servers, power supply units (PSUs) transform AC power to DC power
(in a typical AC architecture). A detailed introduction to these various components
can be found in Section 2.4.5. Besides these hardware components and subsystems,
fine-grained manoeuvres happen in the CPUs, adjusting the power consumption in
real time. One of such techniques is the DVFS, an active power management tech-
nique whereby the frequency of a microprocessor can be automatically adjusted
on spot based upon the computing loads. By exploiting DVFS, machines can save
energy and, in turn, reduce operational costs (an elaborate introduction of DVFS
can be found in section 2.3). Neither building the resource chain nor incorporating
and synergizing various DVFS policies is a straightforward task, which gives rise
to the first research question:

RQ1 How to model the power system of datacenters?

1.2.2 Research Question 2

IN RQ1, we estimate the energy consumption of datacenters through simulation.
Now we are interested in the extent to which datacenters are able to benefit from
directly participating in the energy market. We focus on benefits resulting from tak-
ing part in different markets, specifically, the day-ahead and the balancing markets.
We do not, however, quantify the savings for the electricity grid resulted from a
lower need to generate energy from fossil fuels and/or storing it for datacenter use,
or the operational changes in the electricity grid (e.g., supply curtailment [142]).
Should datacenters participate? If so, which market(s) should be given particular
attention? To answer these questions, we post the second research question:
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CHAPTER 1. INTRODUCTION 1.2. RESEARCH QUESTIONS

RQ2 Is it beneficial for datacenters to participate in the energy market in the first
place?

1.2.3 Research Question 3

RQ2 seeks answers to the question of why datacenters should participate in the en-
ergy market. The next step is to inquire about the most economical way of procur-
ing energy in the energy market, i.e., how to participate. Referring back to Section
1.1.1, reliability and availability are of paramount importance for datacenters. In
fact, load forecast (e.g., [6, 159, 54, 148, 86]) is commonly resorted for energy-
planning in datacenters. Therefore, load-forecast-based procurement strategies are
of particular interest. In turn, we ask the third research question:

RQ3 How to procure energy in the energy markets according to forecasted power
load?

1.2.4 Research Question 4

Leveraging different procurement strategies in RQ3 may bring in substantial prof-
its for datacenters, the energy consumption level, however, cannot be improved by
only doing so. To provide indirect DR whilst reduce the carbon footprint, we turn
to the novel orchestration between machine learning (ML) methods and the low-
level energy-saving technique DVFS. We adjust the DVFS policies in accordance
with the predicted market signals produced by ML models. Moreover, since almost
every new advancement in computer science comes at a cost, mitigating the over-
head introduced by using DVFS when responding to market signals is of the same
importance. These challenges beg the fourth research question:

RQ4 How to optimize energy consumption when participating in the energy mar-
ket using DVFS, based upon ML methods?
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CHAPTER 1. INTRODUCTION 1.3. RESEARCH METHODOLOGY

1.2.5 Research Question 5

There is much to explore when it comes to the interrelationship between datacenter
simulation and the energy markets/power grid. However, as the old saying goes,
“difference in the profession makes one feel worlds apart”. To assist further explo-
rations and bridge the gap in domain knowledge, we raise the last research question:

RQ5 How to create an exploratory tool for problems in this domain, to be used by
experts in both the IT and the energy industry?

1.3 Research Methodology

To achieve RQ1, we employ quantitative research, specifically, system modelling
and simulation [92]. We design [79, 132] and prototype [66] the energy modelling
and power management subsystem of OpenDC in which a set of power models and
a number of generic DVFS algorithms are built and integrated. As a result, these
components should be integrated and work in concert. On the basis of these models
and management techniques, we model and simulate the power system of a typical
datacenter.

To answer RQ2, we carry out experimental research [83], conducting discrete-
event simulations on real-world datacenter workload, quantifying and comparing
the energy costs of participating in different markets. Note that the prediction of
the workloads in production will be more precise as the time approaches the energy
delivery period. However, we do not take into account such an increasing precision
in workload predictability since it is the controlled variable in this work.

To address RQ3, we conduct a case study, collaborating with partners and experts
in the energy market. We obtain the predicted energy prices of the intraday market
as well as details concerning trading and operations in the energy market. We
regard the predicted prices of the balancing market as indicators of energy demand,
with which we adjust the fractions of energy bought in during the day-ahead market
period. By doing so, we leverage energy cost whilst still sufficiently satisfy energy
needs in the balancing market.
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To attack RQ4, we further employ various frequency scaling algorithms in response
to the market signals, developing a DVFS scheduling algorithm powered by ML
methods. By designing workload-level benchmarks [69, 127], we conduct various
experiments using trace-based simulations, focusing on the impact of various data-
center phenomena, such as specialized/mixtures of scenarios and correlated forms
of performance variability.

To tackle RQ5, we honour open-science guidelines [16, 174] and build open-
source scientific software, following rigorous software engineering methods and
PR-review software development cycle [180]. Agreeing on various specifications
with our partners and experts, we adhere to the standard format of market data
from official websites and containerize the deployment of our research instruments.
We make our OpenDC datacenter simulator together with its market extension an
out-of-box tool that is ready to be used by experts in both the energy and the IT
industry.

1.4 Thesis Contribution

By addressing all research questions with our best efforts, we endeavour to trans-
fer our knowledge and experience/lessons learned as well as to deliver developed
software and experimental results to the community as much as possible without
reservation. In this section, we list our scientific contributions (TC) as well as
technical contributions (TC). Also, we identify potential societal impact (SI) and
economic impact (EI) of this research. Additionally, we honour the FAIR data
principles[174] (FAIR), exercising the best practices for sharing data. The contri-
bution of this work is nine-fold:

1. We are the first to demonstrate the substantial financial incentive for individ-
ual datacenters to directly participate in both the day-ahead and the balancing
market {SC, EI}.

2. We suggest a new short-term, direct scheme of energy market participation
for individual datacenters, in place of the current long-term, inactive market
participation {SC}.
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3. We develop a novel proactive DVFS scheduling algorithm that is able to both
reduce the energy consumption {SI} and save the energy cost of datacenters
{EI}.

4. We propose an innovative combination of machine learning methods and the
energy-management technique DVFS {SC} that can provide the power grid
with indirect DR in an effort to overcome the increasing challenges brought
by renewable energy sources {SI}.

5. We are the first to achieve whole power system modelling in datacenter sim-
ulation {TC}.

6. We create a user-friendly and ready-to-use tool for experts in both the IT
and the energy industry to further explore the research potential lies at the
intersection between the two fields {TC}.

7. We publish our code as open-source projects, facilitating future scientific
explorations and collaborations {TC, FAIR}. 1, 2

8. Alongside the code, we publish our datasets and raw experimental results,
which, in turn, are findable, accessible, and do not subject to any ethical,
legal or contractual restrictions {FAIR}.

9. Besides the datasets, we build documentation and make tutorials with ex-
amples to ensure reproducibility, interoperability, and reusability of both the
software and the data {TC, FAIR}. 3, 4

1https://github.com/atlarge-research/opendc
2https://github.com/hongyuhe/opendc-eemm
3https://opendc-eemm.rtfd.io
4https://opendc.org
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1.5 Plagiarism Declaration

I confirm that this thesis work is my own work, is not copied from any other source
(person, Internet, or machine), and has not been submitted elsewhere for assess-
ment.5

1.6 Thesis Structure

Firstly, key terms pertinent to this work are covered in Chapter 2. Then, in Chapter
3 we present the design of the energy modelling and management system, includ-
ing its subsystems and the market extension. In addition, it also introduces the
development pipeline and requirement engineering process. Next, we detail the
implementations of the system in Chapter 4. After that, in Chapter 5 we employ
the developed infrastructure and tools to conduct experiments. In the last chapter,
we answer research questions, summarizing our key findings and results. Lastly,
we identify limitations and envision future research (Chapter 6).

5https://www.vu.nl/en/about-vu-amsterdam/academic-integrity/index.aspx
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II
Background

An overview of related subjects is laid out in this chapter. Key terms covered
include the metrics used for evaluating energy consumption and for the saturation of
critical loads (§2.1), energy proportionality and existing solutions (§2.2), frequency
scaling (§2.3), and the power grid (§2.4), especially, the architecture of the power
system in datacenters that we simulate is also presented (§2.4.5). Last but not least,
we discuss the energy modelling for datacenters in Section (§2.5).

2.1 Metrics

PUE & CPE. Two fundamental energy metrics are commonly used in datacen-
ters, a) Power Usage Effectiveness (PUE) first proposed by Malone and Belady
[113] (Equation 2.1), which can be used for both benchmarking and energy esti-
mation, and b) Compute Power Efficiency (CPE) for measuring the computational
efficiency of datacenters (Equation 2.2).

PUE =
P total

P IT (2.1)

CPE =
U

PUE
=

U ·P IT

P total , (2.2)

14
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where P total is the total facility power, P IT is the power draw of the IT infrastruc-
ture, and U denotes the utilization of the IT equipment.

Reflecting on the continuous growth of energy consumption from 1992 to 2014,
and the raw performance per watt that is radically doubling every year, Malone
and Belady point out that this trend is unlikely to stop in the next years. Also,
they suggest a significant change in the past decades that the major cost of the
datacenters is moving from operation-driven [177] to an infrastructure- and energy-
oriented model.

The average PUE value of datacenters worldwide is still close to 2.0 in 2021
[77]. This is a clear indication of widespread energy-inefficiency in the sense that
to produce 1 W of computational power, around 2 W of power is consumed by
supporting infrastructures such as cooling and other ancillary facilities. In 2008,
only 0.4 improvements of PUE can result in about 350,000$ reduction in energy
cost, which is equivalent to about 430,000$ in 2019. To better capture the power
usage of IT infrastructure, the authors propose the adoption of CPE that directly
reflects the actual fraction of energy used for computing. Note that a slight increase
in PUE can boost the CPE significantly. For example, a typical PUE of 2.0 for a
well-managed datacenter has a CPE of 10%, whilst a PUE of 1.6 corresponds to
a CPE of 50%. Thus, CPE is a relatively more sensitive and intuitive indicator of
energy losses for both the IT and supporting infrastructure.

TUE & ITUE. Patterson et al. [130] developed IT-power usage effectiveness
(ITUE) and total-power usage effectiveness (TUE) to improve PUE and CPE re-
spectively, by taking into account the power distribution and cooling losses inside
IT equipment [130]. These metrics aim to tackle the challenge of estimating and
tracking the total efficiency of the entire energy stack for datacenters. The compu-
tation of the metrics are captured by Equation 2.3 and 2.4:

ITUE =
P total

P compute (2.3)

TUE = ITUE ·PUE, (2.4)
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where P compute is the power draw of only the equipment related to computing ser-
vice.

Resource Utilization Metrics. The debate of performance metrics is known
as one of the “Rat Holes” in systems research [82]. Gauging the saturation of the
CPUs is never a trivial task, and over time, a number of metrics have been widely
used in various contexts. In this section, we focus on three commonly employed
metrics, namely, CPU load, CPU usage, and CPU utilization. First and foremost,
it is worth noting that the definition of CPU load/usage/utilization varies with dif-
ferent use cases, platforms, and organizations [164, 76, 41, 173]. Sometimes they
are even used interchangeably by many people, albeit quite different. This is par-
tially due to the fact that there is no single, universally standard way of defining
these metrics. Nevertheless, the CPU load (l) is generally used in the context of
the Linux scheduler, in which the run queues of the processors are accessible. The
calculation of l along the lines of Equation 2.5; computing the average CPU load
(la) is also a common practice (Equation 2.6).

l = Nrun + Nqueued + Nblocked (2.5)

la =
l
c
, (2.6)

where Nrun is the number of tasks that are being processed, Nqueued is the number
of tasks in the run queue, Nblocked is the number of tasks blocked by I/O, and c is
the (logical) core count of the machine.

When it comes to CPU utilization/usage, the definitions often become a bit
more nebulous. In this work, we distinguish these two in accordance with different
viewpoints in the context of server architecture. With regard to the host, neither the
run queue nor scheduler is visible at the firmware level. Therefore, from the stand-
point of bare-metal machined, it is impractical to evaluate any metrics other than
the ratio of the current CPU speed to the CPU capacity. In our case, we simulate
Type-I hypervisors directly on top of the physical interface of the host machines.
Hence, we employ the concept of the CPU usage (u) illustrated by Equation 2.7
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throughout our energy modelling and management system.

u =
f
F
, (2.7)

where f is the instant CPU frequency, and F is the CPU capacity.

In contrast, from the virtual machine (VM) or operating system (OS) point of
view, the run queue, the scheduler and the wall time for every task are available. In
turn, evaluating the CPU load is a feasible work. Thus, in the case of this work, we
specify the CPU utilization at the VM/OS level following Equation 2.8. In addition,
the average CPU load (also known as Per-entity Load Tracking [40]) is used in the
schedutil scaling governor, and the concept of CPU utilization uos (called “CPU
load” in the context of the Linux kernel) is used in other governors.

uos =
tCPU

twall
(2.8)

= 100%−
tidle

twall
,

where tCPU denotes the CPU time, twall denotes the wall time, and tidle is the accu-
mulative time in which the CPU is idle.

Besides the available abstraction offered by the current architecture of our in-
frastructure, another reason for using the CPU usage rather than the other two met-
rics is that the time measurement in simulation is generally at a coarser granularity
than that of run-time systems in the real world. In other words, datacenter simu-
lations are of a high abstraction of the real-world scenarios in that the traces, on
which the experiments are conducted, usually have an interval of several seconds
or even minutes between records. Conversely, timing is critical in gauging the CPU
utilization, so much so that pitfalls often occur if the interrupts were to happen at
undesirable points in time [37]. In addition, when assessing the CPU utilization, the
Linux kernel does not take account of the total CPU capacity and the actual CPU
speed since both of which are out of reach at the OS level; they are, nevertheless,
available through the hardware interface in our simulation infrastructure. Hence,

Page 17 of 142



CHAPTER 2. BACKGROUND 2.2. ENERGY PROPORTIONALITY

we decide to take advantage of the resources available in our instrument, basing the
following development of our energy modelling and management system upon the
CPU usage.

2.2 Energy Proportionality

The inclinations demonstrated in previous reports [20, 96] show that the rising en-
ergy consumption steadily dominates the total cost of ownership (TCO) including
both computing and infrastructure costs. Barroso and Hölzle [10] claim that, in or-
der to prevent energy footprints of datacenters from exploding, the improvement of
energy efficiency should keep up with the growth of computing power. From the re-
sult of their study [113], datacenters’ raw performance has been growing five times
faster than their performance-watt ratio. Moreover, Malone and Belady demon-
strates a fatal mismatch of datacenters in which the most used working mode often
runs in the least energy-aware way with fairly low CPU utilization. To combat
this challenge, energy proportionality, i.e., datacenters consume nearly no energy
when standing by and gradually raise power consumption as workloads increase,
is proposed as an ultimate design goal. Consequently, operating datacenters at the
near-peak performance level with a high utilization is preferred as the higher uti-
lization, the better energy efficiency.

That been said, energy proportionality is not an easily achievable objective.
By the nature of distributed systems, not only computation but data is allocated
amongst hundreds of, if not thousands of, geographically distributed nodes. The
purpose of such an architecture is to create duplications, increasing service avail-
ability and, in turn, reducing risks caused by disastrous situations. One of many
services that hinge on such an architecture is the Google File System (GFS) [59].
Conversely, such settings come at a cost — distributed servers are expected to be
always up and running, even if no heavy workloads are hosted [113]. As a result,
servers in a datacenter are often neither fully idle nor operates at their maximum
utilization. Instead, they mostly operate in the 10 to 50% utilization range [144].
Moreover, as Malone and Belady have suggested, because of the need for perform-
ing constant, small operations in the background, networked nodes can hardly enter
deep sleep states. When severs are running at their lowest operational states, they
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consume more than half of their full power [113] (approximately 70% of their full-
speed power [137, 98, 161, 55]). In addition, the impact of the energy loss incurred
during the wake-up stage is not as significant compared to the energy consumption
under normal utilization level. These characteristics can rarely be found in other
systems, such as mobile and embedded systems. Besides the peak-power range,
energy efficiency, therefore, should be optimized at all frequency steps.

With the growing energy consumption of modern datacenters and the increas-
ing concern of global warming, more and more studies are being conducted in
the search for sustainable solutions. With regard to the energy efficiency of mod-
ern datacenters and cloud systems, a full taxonomy has been built by Beloglazov
et al.. Methods for energy management are generally categorised as two major
types, a) static power management (SPM) and b) dynamic performance scaling
(DPS) [15, 80]. In each of them, both the hardware and the software solutions have
their important role to play [104]. The major objectives thereof are two-fold: (1)
improving hardware design such as energy-efficient computing as well as models of
cooling systems [62, 152, 147], and (2) creating better resource management algo-
rithms, including workload scheduling [5, 3, 122], policies of power management
[120], etc.

Beloglazov et al. investigated the solutions at a more fine-grained level. They
separate the case studies into four levels namely, the hardware and firmware level,
the OS level, the virtualization level and the datacenter level. To achieve a bet-
ter TOC and to speed up Returns On Investments (ROI), and most importantly, to
mitigate the carbon footprints of datacenters and cloud services, an integrated ap-
proach detailed at each of the four levels is proposed [15]. Similarly, Chien et al.
proposed a set of computing models, the Zero-Carbon Cloud (ZCCloud) that fea-
tures a bottom-up approach from the selection of sustainable sites to high-level
infrastructure design [35].
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2.3 DVFS as Mechanism to Manage Energy

In computing machines, different hardware components usually operate at various
states, and generally speaking, binary states (e.g., active and inactive) are applicable
to most of these components. The idle state and inactive state should be clearly
distinguished, as they are rather different from each other. When a machine is idle,
it operates at its lowest active state without undertaking any useful work, whereas,
in the inactive states, it is in one of the standby or in sleep states [68]. Note that, in
some literature, the inactive states are regarded as idle states whilst, in this work, the
idle state is referred to as the lowest available working state. Also, CPU frequency
scaling introduced in this section is an active power management technology.

2.3.1 Frequency Scaling

Operational states differ from component to component. For example, memory
could be in states such as precharging, refreshing, writing, reading, etc., whilst for
network switches, the ports therein can operate at various rates, which correspond
to another set of states different from that of the memory. Each of these operational
states corresponds to a different energy state,i.e., their energy efficiency differs in
accordance with the type of the operations and/or the speeds of that operations are
carried out. This, in turn, makes the energy management of the CPUs relatively
more intricate.

P ∝C ·V2 ·F + P idle (2.9)

Modern CPUs are capable of running at various speeds/frequencies, each of
which has a certain rate of power consumption; Equation 2.9 illustrates this well.
The power consumption (P) of a CPU is proportional to the capacitance (C), the
voltage (V) and the clock frequency (F) of the CPU, whereas its idle power P idle

is an addictive term. Clearly, the frequency is linearly correlated with the power
consumption, whilst the voltage has a quadratic correlation with it. However, this
might give the impression that halving the CPU frequency will make the running
time of the hosted workloads twice as long, whilst they still consume the same
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Figure 2.1: Transitions between the power states defined in the ACPI standard.

amount of energy. If so, the best option would always be race-to-halt,i.e., execute
all tasks (threads in the view of the kernel) as fast as possible and then, put CPUs
into sleep.

This impression is not actually the case, due to the fact that the CPU frequency
and the voltage applied to the CPU move together. In other words, by the law of
physics, it is impossible to acquire a higher CPU frequency without increasing the
voltage because boosting the voltage level requires frequency uplift. Therefore,
adjusting CPU frequency has a quadratic impact on its energy consumption. In
turn, race-to-halt is not ideal since the P idle only has a linear effect that is not able
to offset the impact of voltage variation. Hence, if possible, the CPUs should be
reduced to a lower speed with a lower voltage in order to save power, which is
where dynamic frequency and voltage scaling (DVFS in short) comes into play.
Furthermore, the purpose of using DVFS is twofold [78]: besides saving power,
DVFS helps processors reduce the peak thermal load. The effectiveness of the
cooling system relies upon the peak power instead of the average power. Thus,
capping the peak power decreases the cost and the size of the cooling equipment.
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2.3.2 Power States

To achieve DVFS, Operating Performance Points were introduced, representing
several levels of voltage and clock frequency at which the CPUs are able to operate.
P-states (performance states) is the terminology used for Operating Performance
Points in the Advanced Configuration and Power Interface (ACPI) standards [1].
As shown in Figure 2.2, the higher the P-state, the lower the core frequencies and
voltage, in turn, ultimately saving more energy. Besides P-states, ACPI also defines
a set of other types of states, namely, G-states for global system states, D-states for
device power management, C-states for the CPU power states, and S-states that
entail a number of sleep states. In respect of the CPU, P-states and C-states (CPU-
states) are of particular interest. Figure 2.1 further illustrates how P-states and C-
states work with other power states. In the context of G0 – Global Working State,
it refers to the active mode in which the CPU is executing instructions, whilst from
C1 to C8, the power usage of the CPU is gradually reduced in order to sequentially
save more energy. In the context of C0 – CPU Executing State, the processor can
operate at different P-states to further curb the energy consumption. As explained
above, P-states modulate both the CPU frequency (in MHz) and the voltage at the
same time, and the P-state Px depends on the number of frequency steps available
in different platforms. By the virtue of the quadratic relationship demonstrated by
Equation 2.9, noticeable energy saving can be achieved by enabling P-state scal-
ing. In addition, in some machines of older generations that predate C-States and
P-States, throttling states (T-States) are used under thermal emergency where the
processor is overheating. This is achieved by gating the CPU clock — the higher
the temperature, the higher the T-State and, in turn, more CPU cycles will be gated.
As T-States are outdated technology, they are not considered in this study.

2.3.3 DVFS in Linux

P-states are effective in saving power, they, however, are handled differently by dif-
ferent platforms. In this work, we focus on the DVFS implementation of Linux.
The CPUFreq subsystem is responsible for CPU frequency scaling in the Linux
kernel, offering a basic infrastructure and user-mode interface for all devices that
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Figure 2.2: P-states and corresponding power consumption levels (data source: [75]).

support P-states. It not only provides other components with a framework in which
they operate but also gives the opportunity to implement various frequency-scaling
mechanisms in accordance with the (estimation of) CPU capacity demanded by
workloads. To this end, a number of generic scaling Governors and Drivers are
provided by the Linux kernel [91]. A Governor is a piece of software in which the
algorithms/policies for adjusting the CPU frequencies are implemented. The scal-
ing rules thereof are based on the estimation of the required CPU capacity. Each of
the Governors implements one set of frequency scaling rules, and these policies are
located under the directory /sys/devices/system/cpu/cpufreq/. The scaling
Governors are independent of specific CPU architectures. A Driver is another
piece of software that is responsible to interact with hardware directly. They offer
available Governors a set of machine-specific P-states and apply the frequencies
proposed by Governors to the machine via hardware-dependent interfaces. If the
scaling algorithm implemented by a Governor is per-policy as opposed to system-
wide/global, Drivers will find the corresponding tunable attributes (sysfs) in the
subdirectory of the policies (/sys/devices/system/cpu/cpufreq/policy{#}).
In spite of the existence of driver-specific properties, Drivers and Governors are
designed to be orthogonal, i.e., they are supposed to be used in any combinations.
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Figure 2.3: Different behaviours of the ondemand and the conservative governors
in the Linux kernel.

This design is achieved via a set of struct cpufreq_policy objects, each of
which is associated with one or several CPUs. The type of Governors can be
altered during runtime, and in turn, several Governors attached to the CPUs can
share the same policy object by setting the scaling_governor attribute in sysfs.

2.3.4 Governors & Drivers

Six generic Governors are available in the Linux kernel: 1) the performance gov-
ernor, which immediately request the highest frequency within the limit specified
by the scaling_max_freq attribute of each policy, 2) the powersave governor,
which proposes the lowest frequency above the threshold specified by the scal-
ing_min _freq of each policy, 3) the userspace governor, which does nothing
aside from allowing the scaling_setspeed attribute of each policy to be set in
user mode, 4) the schedutil governor, which runs in the context of the Linux
scheduler and uses the scheduler for estimating the next frequency to which the
CPUs ought to be adjusted, 5) the ondemand governor, which uses the CPU load
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as the metric for selecting the CPU frequency, and 6) the conservative governor,
whose policy resembles the two-stage frequency scaling process of the ondemand
governor but requests changes in small steps. The schedutil governor is devel-
oped to tackle the challenge of estimating the requested CPU capacity. It employs
data obtained from the scheduler instead of only the data from the CPUs since the
scheduler is more informed by the run queue, information of I/O blocking, etc.
Such a mechanism can be of great help in DVFS because, for instance, a task that
is not running but waiting or blocked by I/O also contribute to the load of the sys-
tem, whereas a long-running task that accumulatively consumes a large number
of resources may not be as demanding at the moment. In addition, the difference
between the ondemand governor and the conservative governor are subtle but
important. Both of them are running in the process context asynchronously, which
causes little overhead to the scheduler but generates more context switches. The
interrupts triggered by them for updating the P-states can be irregular, and the idle
time of the CPU is, thereby, reduced. As illustrated in Figure 2.3, before reaching
the (configurable) speedup threshold, the ondemand governor will propose the next
frequency proportional to the current CPU load 1 (Equation 2.10). Conversely, as
for the conservative governor, no changes in frequency will be requested at the
first stage 2.

f = fmin + l ·
fmax− fmin

100
, (2.10)

where f is the next frequency to propose, fmax and fmax denote the maximum and
minimum frequency specified in the scaling policy, respectively.

Once the threshold is met, the ondemand governor will jump straight to the
maximum frequency limit (scaling_max_freq), whilst the conservative gov-
ernor will request frequency changes continuously (both increase and decrease) in
small steps in order to avoid significant frequency fluctuations over short periods of
time. This mechanism is particularly useful when drastic changes in CPU frequen-

1https://github.com/torvalds/linux/blob/master/drivers/cpufreq/cpufreq_
ondemand.c

2https://github.com/torvalds/linux/blob/master/drivers/cpufreq/cpufreq_
conservative.c
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cies are not supported or suited for the machine. The default threshold in the Linux
kernel is 80%. In other words, if the idle time to wall time ratio is less than 20%,
the two governors will start boosting core frequencies. In addition, the minimum
step size of the conservative governor is 5% of the maximum frequency limit.

Note that the P-state scaling provided by Intel (intel_pstate [90]) is rather
different from that of the generic policies. It comes with its own algorithms and
bypasses the built-in drivers of the Linux kernel. Specifically, the Intel SpeedStep®

and the Speed Shift® technologies [74] are available by the time of this study. The
former switches P-states based on certain algorithms that are not open-sourced, and
the latter is an improved version of the former. Instead of changing P-states in a
discrete manner, Speed Shift® enables a full multiplier range or narrow window. It
is able to fully ramp up a core speed in response to a lower P-state faster (30-35
ms) compared to that of the SpeedStep® (100-150 ms). However, it is limited to
the Skylake architecture and needs support from operating systems. Thus, intel_-
pstate is not considered in this work.

2.3.5 Multicore

As elaborated above, although a struct cpufreq_policy object can be assigned
to multiple CPUs, a single CPU is able to occupy a policy object itself. However,
in old-generation machines, all (logical) cores of a package are managed under the
same power domain [150], which means they are all in the same P-states at any time
based upon their maximum load [74]. This is akin to the mechanism of the mul-
ticore C-states. Furthermore, under the OS C-states, there are 1) CC-states, which
offer a set of idle states for each physical core, and 2) PC-states for the idles states
at the package level covering various shared resources. Both the CC-states and the
PC-states are set by taking the minimum level of their respective state (which has
the highest frequency value) over all its components. Notably, in Intel ×86 proces-
sors that support hyper-threading [116], per-thread C-states can be obtained, man-
aged in the same manner as that of the PC-states and CC-states. For P-states, how-
ever, only until recent generations (after Haswell [65]), processors have just started
supporting P-states for each (logical) core, known as multicore-aware P-state coor-
dination [74]. Nevertheless, few datacenter simulators support this feature (§2.5),
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as it is too detailed for high-level datacenter simulation and may introduce sub-
stantial overhead as well [25]. Also, these datacenter simulators or their respective
energy extensions [68, 42, 26] reuse the core-level infrastructure previously built to
achieve this feature so that backward compatibility is better maintained. As we do
not have such an issue in our OpenDC simulator, we take package-level decisions
when switching between P-states to circumvent the unnecessary overhead (§4.1).
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Figure 2.4: Challenges faced by energy transmission and trading.

2.4 Power Grid

Energy, or specifically, electricity, is a special type of commodity. This section
covers the basics of the power grid (in the EU) with regard to both its financial
perspectives and real operations. As of the time of this work, once it has been
generated, it is neither practical nor economical to store them on a large scale for a
long time. To function well and to avoid issues such as blackout and power outage,
a balance between power generation and consumption must be kept at all times.
Its transportation and distribution are performed on a power network, governed
by specific physical rules of mother nature. Also, it features inelastic demand as
the power load can affect the energy prices but not the other way around. The
majority of the end-users is of rubric of the society (e.g., residential, production,
hospital, etc.), whilst the roots of the generated energy are not differentiable, i.e.,
the power produced by burning coal and the power produced by solar panels have
no difference in the eyes of the consumer. Nevertheless, the origin of energy makes
a huge difference in the producer side as well as to the energy market. Determined
to tackle the climate crisis, the EU has turned its market into a massive entry of
renewable energy sources. However, this comes at costs that greatly diminish the
competence of renewable energy compared to fossil fuel.
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2.4.1 Markets Around the Power Grid

As shown in Figure 2.5, when it comes to the power grid, there are three types
of markets in the EU. In the capacity market, system operators ensure sufficient
capacity of power generation is retained for sustaining competitive prices and re-
liable operation in the coming years. They also provide many services such as
Primary/Secondary/Tertiary reserves and voltage control, of which the ancillary
market is comprised. In this work, we focus on the energy market in which optimal
scheduling and power exchanges take place. In respect of the energy market, four
major parts arranged in a sequence interact with one and another (Figure 2.6), keep-
ing a delicate balance for both the financial markets and the actual operations in the
power grid. Firstly, contracts for physical delivery of energy, price hedging and risk
management are made in the Forward & Futures markets. Secondly, treating the
current trending as the spinal core for predicting the matching of everyday demand
and supply, participants buy or/and sell energy for the next 24 hours in a closed
auction held in the Day-Ahead market, which is the most important market in the
EU. In other words, according to the previous market-clearing outcomes (price and
volumes for each market time unit), market operators will dispatch themselves con-
cerning the pattern of power generation and consumption of the next day (often in
a 15-minute increment).
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Figure 2.6: Types of energy markets in the EU.

After this blind auction, a spot price is settled at the intersection where the de-
mand meets the supply. This can be regarded as the first balance reached in terms
of the financial market of the power grid, it, however, does not imply any obliga-
tion towards prosumers, i.e., no one is forced to produce or consume the promised
quantities. Then, as a continuation, the Intraday market provides prosumers with a
bilateral trading platform by which they can adjust their self-dispatched units in the
Day-Ahead market based on the newest status (e.g., updated weather/market pre-
dictions) before the actual operation/delivery commence. Finally, the Real-Time
market serves as the final guard during physical operations, which is where the sys-
tem operators (in the EU) take over the market, offering regulation to counteract
the remaining imbalance and charging the prosumers based upon actual figures in
the power meters against the contracted volume.

2.4.2 Balancing the Power Grid

There are two levels of (im)balance in the power grid, the positive/negative/no im-
balance at the overall system level and that of the prosumer level. Even if not all
prosumers have reached a balance, it is possible that the overall system of the power
grid can still strike a delicate balance. Although balancing the grid is the central
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Figure 2.7: Sequence of energy markets.

duty of the system operators, it is neither solely pertinent to the system operators
nor only take place in the Real-Time market. Instead, it is relevant to every partic-
ipant and is performed at almost every stage of the market sequence demonstrated
in Figure 2.7. Firstly, as described in the previous section, in the EU, the day-ahead
auction is the most important market whose clearing yields a spot price at which
demand and supply meet for the first time. This, however, does not imply any ac-
tual obligation towards prosumers. In other words, they are free to (intentionally or
accidentally) break the contract during real-time operations.

As shown in Figure 2.7, there is still a maximum 33-hour interval in time be-
tween the clearing of the spot auction and the start of the delivery. Market operators
can take advantage of this period to adjust their initial commitments in the Intraday
market until one hour before the delivery phase, hedging the risks of under-/over-
production. This can be treated as the second balancing procedure of the power
grid. Last but certainly not least, after the physical operations commence, the sys-
tem operators take control to ensure the grid is balanced during energy transmis-
sion. The Real-Time market consists of two sub-markets, namely, the obligation
market and the balancing market. Prior to the start of transmission operations,
prosumers who participated in the regulation market can offer to buy and/or sell
regulation power to the system operators. In other words, these are the participants
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who are capable of helping balance the grid, declaring to the system operators
the willingness of altering their set-points on the consumption side and/or the pro-
duction quantity. Also, the system operators can actually purchase the regulation
resources from neighbouring countries. This is usually in the form of commercial
entities buying, selling and transporting electricity across a border, and participat-
ing in markets in both countries as any other energy prosumer would. BritNed, the
cable between the United Kingdom and the Netherlands, is an example of this. In
contrast, the prosumers who do not respect their original agreements and, in turn,
induce imbalance in the power grid will be charged by the system operators on
the basis of the difference between their original schedules and the actual readings
from the power meter. On the contrary, if a participant is helping the system op-
erator balance the power grid, e.g., a consumer is in positive imbalance and the
system is in positive imbalance as well, then the prosumer would be rewarded by
the system operator as they are helping balance the grid (in spite of not following
their schedule). Via these settlements and other energy reserves, the balance of the
power grid is maintained in real-time operations by the system operators.

Note that the elaboration above is tailored to the EU energy market in which
the transmission system operator (TSO) has the ultimate responsibility to keep its
transmission system in balance. For other places such as the USA that relies on the
independent system operator (ISO), the energy market, especially, the balancing
mechanisms are different. Nevertheless, the market sequence is shown in Figure
2.7 still applies and the objectives of the balancing phase stay the same. An excel-
lent load/price forecast and flexible operational responses to the market will bring
substantial benefits to the prosumer. For example, if it is predicted that the de-
mand/price will be lower during the Real-Time market, then one can sell (short) in
the Day-Ahead market and buy in more energy in the Real-Time market. This can
facilitate energy-aware scheduling in industry production. As a result, the prosumer
will receive the profits along the lines of Equation 2.11:

G = (Qa−Qs) · ζ , (2.11)

where G denotes the financial gain, Qa represents the actual quantity of energy
transmission, Qs is the scheduled quantity in the spot market, and ζ denotes the
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locational marginal pricing.

Bidding in the Day-Ahead market is going to push the prices up; good forecast
and flexible responses to the market foster smooth pricing in the Real-Time market,
which will bring the prices down to what they ought to be. Consequently, it can
bring the prices of today and tomorrow closer, and ultimately help the power grid
strike a balance that would greatly reduce the electrical system charges and, in turn,
lower the grid balance cost.

Network Code Definition Activation Time

FCR Primary control (automatic activation) > 15 minutes
aFRR Secondary control (automatic activation) 30 seconds – 15 minutes
mFRR Tertiary control (semi-automatic or manual activation) ≥ 15 minutes

RR Optional control (semi-automatic or manual activation) ≥ 15 minutes

Table 2.1: Balancing reserves in the EU.

Furthermore, the imbalance energy trading happens in the regulation & balanc-
ing markets are of particular interest of this work. During the trading, Balancing
Service Providers (BSPs) offer bids to counter the imbalance in power supply and
consumption during the delivery hour. The imbalance is introduced by Balance Re-
sponsible Parties (BRPs), which are the prosumers responsible for the deviation be-
tween their actual delivery and their self-dispatched volume concluded in the day-
ahead/intraday clearings. Specifically, in the Netherlands, these self-dispatched
commissions are in the form of “E-programs” in a 15-minute resolution. Hav-
ing been reported the readings of the meters, TSO will ascertain the deviation for
every BRP. Then, BRPs are obliged to pay their energy deficit or surplus by par-
ticipating in the imbalance settlement. In terms of timing, BRPs can change their
“E-programs” until one hour before the start of the delivery through, e.g., the Intra-
day market, whilst BSPs are able to change their bids 30 minutes before the start of
a delivery hour. The 15-minute interval of an “E-programs” is known as an Imbal-
ance Settlement Period (ISP), and every day has 96 ISPs. As summarized in Table
2.1, various mechanisms are employed by TSO in the imbalance system, including
Frequency Containment Reserve (FCR), automatic Frequency Restoration Reserve
(aFRR), manual Frequency Restoration Reserve (mFRR), and Replacement Re-
serve (RR). They differ in their rate of ramping up. For example, the activation
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Figure 2.8: Duck curve showing the net load of the power grid for 11 January from
2012 to 2020 in California (figure source: [81]).

time of an aFRR is required to be no longer than 15 minutes with the minimum
bid size of 1 MW. In this work, we do not distinguish the types of means by which
the BSPs provide balancing energy to the grid since they are paid from the same
ground irrespective of the type of reserves activated.

2.4.3 Challenges of Renewables

As elaborated in the previous section, balancing the power grid is a win-win for
both the grid system and the prosumers. However, it faces increasing challenges
brought by the introduction of renewable energy sources, for example, solar, wind
and tidal power (its current contribution is diminutive to the grid). This is due to the
fact that these origins of energy are erratic and, thus, hard to predict. This brings
risks to both the prosumers and our environment. For prosumers, the energy market
incurs more fluctuation and, in turn, is more precarious that even the Intraday mar-
ket will not give enough operational headroom. Concerning the environment, re-
newable energy generation needs constant backup from traditional energy sources,
which exacerbate the reliance on fossil fuels. One of many quintessential exam-
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Figure 2.9: Solar power generation at the University of Queensland over three days
in September 2018 (data source: [81]).

ples for variable generation resources is the duck-curve phenomenon (Figure 2.8)
first introduced by California independent system operator (ISO). As the degree to
which the power grid is dependent on renewable sources grows from 2012 to 2020,
the daily variation of the load within increasingly boosts over the years.

To further illustrate the challenges brought by renewables, Figure 2.9 shows
the power generated by the solar panels at the University of Queensland, St Lucia
campus, Prentice building in three consecutive days. When there is no sunshine at
all, a drastic drop will occur in solar power generation; if the weather is overcast,
the reflection of light on the clouds may actually bring more solar power. The third
day in this graph is obviously rather cloudy. The challenges brought by renew-
able energy sources in balancing the grid put further emphasis on the paramount
importance of flexible and quick demand-side responses to the requests from the
system operators and price/load of the energy market. This will not only enable
prosumers to stay competent and profitable but also provide the power grid with
sufficient energy reserves in the long run.
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2.4.4 Demand Side Management

Intensive work has been conducted to explore the datacenter’s participation in DSM
programmes. A synergistic control strategy and a flexibility factor have been de-
veloped to increase the capacity of frequency regulation in a recent study [52]. Fu
et al. presented a real-time, multi-market optimization framework for the datacen-
ters [53], facilitating datacenters to participate in both the energy market and the
regulation operations. Taking into account the energy cost, demand costs and regu-
lation revenues, the framework optimizes the bid in each hour, helping datacenters
meet energy and demand goals whilst retain minimum cost through obtaining maxi-
mum regulation revenues. However, this work focuses on enlarging the FR capacity
of datacenters, which is of rarity in the industry [12].

Via dynamic pricing, Li et al. proposed a collaborative framework for opti-
mizing the overall costs of several datacenters in their position paper [102]. The
framework employs collaborative efforts across multiple geographically distributed
datacenters that communicate via dedicated network fabrics to negotiate mutually
optimal energy prices. In this collaborative system, an optimization platform [107]
is used to enable constraint optimization problems (COPs). However, to benefit
from these schemes, multiple datacenters and their utility companies have to be
involved in order to optimize the price updates in the energy market.

In respect of market design, two categories of programmes for DR are com-
monly available. The first category entails biding/supplying a certain amount of
demand flexibility into the market. In other words, consumers bid their flexibility
via supply functions that are parameterized (e.g., [85, 176]). As for the second
category, consumers buy in or respond to published prices that were selected ac-
cording to predictions on (potentially) available flexibility; examples of the second
sort include [38, 101, 136, 109]. Specifically, programmes such as the Coincident
Peak Pricing (CPP) [7] and price-based incentive programmes [145] are available
for datacenters to participate in. These programmes charge much higher prices for
electricity during peak hours (usually over 200× higher than the base price [109]).
Such peak-hour costs can account for 23+% of the consumers’ energy bill [158],
which is a strong motive for consumers to reduce their energy usage during peak
hours. However, when it comes to datacenters, Liu et al. argued that the market

Page 36 of 142



CHAPTER 2. BACKGROUND 2.4. POWER GRID

designs and models in the second category outperform those in the first. Also, the
current available DR programmes, such as CPP, are not particularly suitable for
datacenters since they can barely fully extract the flexibility of datacenters due to
many reasons. Chief amongst them is that although datacenters may incur charges
if no response is offered, no profit would be produced either if the peak in en-
ergy load does not happen during the coincident periods. As a result, datacenters
nowadays provide little, if any, response to market signals [58, 60, 109, 108]. In
addition, a large amount of effort has been devoted to the optimization of workload
management of datacenters (e.g., [34, 56, 71, 105, 121, 175, 179, 183]), especially,
via workload distribution [138, 110, 57, 170, 182, 168]. When such optimization
is considered, time for shedding the load is able to be reduced and, in turn, the
flexibility of datacenters can be exploited further. Moreover, by leveraging the
regional difference of the energy cost, datacenters can leverage their distributed
nature to further optimized [135, 138, 110, 106, 57, 170, 182]. In fact, these man-
agement strategies require cooperation between the power grid and geographically
distributed datacenters together with their utility companies. Thus, they are far
more complex to orchestrate than what is introduced in this work, which, in turn,
could potentially hinder their adoption. In this work, we develop a straightforward,
short-term scheme, whereby individual datacenters can participate in the energy
market, both saving their energy cost and curbing their energy consumption, whilst
providing the power grid with indirect DR.

2.4.5 Datacenters and the Power Grid

Whilst system-level challenges have been brought into the grid by renewable en-
ergy sources, increasing numbers of opportunities are being created in the mean-
time. Especially, as the proportion of worldwide electricity attributed to datacenters
is sky-rocketing, these challenges could well be a blessing in disguise for datacen-
ters. Over recent years, more and more studies regarding the participation of dat-
acenters in the power grid have been carried out. Several identified characteristics
therein of datacenters underpin the increasingly important role played by datacen-
ters. To name a few, firstly, the capacity of datacenters are huge in the sense that
the nameplate load of a single datacenter is able to reach as large as 50+ MW [19].
Moreover, for large cloud providers, the critical power of a single datacenter can
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Figure 2.10: Energy flow in datacenters.

even exceed 100 MW [9]. To put this into perspective, Wierman et al. suggest that
a well-managed datacenter of 30 MW has approximately the same capability for
regulating the power grid as massive energy storage of 7 MWh. Thus, overlooking
datacenters in balancing the grid means missing out on a huge amount of capac-
ity. Secondly, datacenters are built for extremely reliable and available services.
For instance, two availability classes to which most modern datacenters belong are
Tier III and Tier IV. Datacenters that fall into the first category insure a 99.982%
availability, and for the latter, the figure is 99.995% [114]. To accomplish promised
uptime and performance guarantees, a considerable amount of redundancy is intro-
duced in the power system of datacenters.

As demonstrated in Figure 2.10, a large portion of the energy goes into the
power support system that has a high degree of redundancy, and almost all energy
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ultimately turns into heat in the end. To ensure a secure power supply, datacen-
ters usually have two energy sources. As accessing to two utility power sources
is not often feasible, most datacenters use a backup generator as the second power
source. These generators are powered by gas, diesel or flywheel, providing power
when the utility power fails. In the event of power failure, the automatic transfer
switch (ATS) will start the generator to power the uninterruptible power supply
(UPS) load. The UPS system supports servers, data communication systems and
other equipment during a sudden power failure or voltage drop. It provides clean
power to sensitive data equipment by eliminating power surges, noise, spikes, etc.
The UPS system also constantly conditioning and monitoring utility power to pro-
tect the load. Batteries therein are constantly been charged for emergency sup-
port during a utility outage. Note that one of the most important factors to ensure
proper UPS performance is the battery quality in the sense that one bad battery is
able to bring the entire system down during a power interruption. Serving as the
last layer of adjusting the electricity, Power distribution units (PDUs) provide the
ability to control and monitor how the power is distributed to the IT infrastructure.
The facilities in the mechanical yard are critical for environmental controls (e.g.,
heating, cooling and humidity). They maintain a proper environment for electronic
equipment by tolerating fluctuations in moisture and temperature. One of the most
efficient forms of cooling for datacenters is a close-coupled in-row, chilled wa-
ter cooling system, also known as a computer room air conditioner (CRAC). Fur-
thermore, the appropriate placement of air returns and the use of perforated floor
tiles/sensors can help eliminate hot spots and gain efficiencies in the building. All
these equipment are built for facilitating the computing services provided by the
server farm, in which racks designed specifically for datacenters offer a modern
enclosure with strength and stability for any server environment. Components such
as the backup generators, UPS, transformers, chillers/Computer Room Air Condi-
tioner units (CRACs), Computer Room Air Handler units (CRAHs), etc., can all be
regarded as redundant equipment.

Further, perhaps what counts more is the significant flexibility of datacenters,
making them extremely elastic power loads for the grid. For example, the wide
range of temperatures under which the datacenters can operate results in various
power loads [50]. Also, many workloads of modern datacenters are delay-tolerant.
In other words, the schedule of these workloads can be shifted in response to the en-
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ergy market and requests from the system operators to optimize profit as elaborated
in previous sections. Power management techniques such as frequency scaling [33],
power capping [183, 29, 105] and different levels of energy-saving configurations
[71] further boost the flexibility of datacenters. Lastly, datacenters are complex but
highly automated systems. Ubiquitous monitors and controls empower datacenters’
participation in the power grid.

In general, datacenters participate in the power grid in two ways, Demand Re-
sponse (DR) and Frequency Regulation (FR) [12]. Note that FR can be catego-
rized as a special means of DR [171] as the overlap between the two is substantial.
LBNL proposes potential DR resources that reside at different components of data-
centers [114], including supporting equipment such as backup generators and UPS,
programmable power managements such as DVFS and power capping, server con-
solidation by virtualization, and load (re)scheduling & migration. Note that some
of these methods are not particularly environment-friendly, for example, the using
the backup generators [50]. But in terms of effectiveness, even methods like power
capping are relatively coarse-grained, it can potentially enable datacenters to tuck
about 25% more servers into the same amount of space [146]. In respect of FR, its
resources have a huge overlap with that of the DR. The main difference between the
two is that FR requires a way faster timescale, usually at the second level. More-
over, both the supply side and the demand side need to constantly work together to
automatically lubricate the small frequency fluctuations in the power grid. By the
virtue of fast charging and discharging, UPS becomes a good candidate in FR; the
“UPS-as-a-Reserve” [46] is one pilot project of such. Similarly, because of their
quick response, power management such as DVFS [28, 30] and dummy workload
[171] are also well-suited resources for FR.

FR enables datacenters to take part in the real-time market as well as the ancil-
lary market. Nevertheless, DR is far more common than FR because, for datacen-
ters, FR is too fast and risky to visualize and control [12]. In this work, we focus
on datacenters’ participation in the day-ahead and the intraday markets. Thus, DR
is the focal point of this study.
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Figure 2.11: Approximate distribution of energy usage in a datacenter with PUE value
of 2.0 (data source: [11]).

2.5 Energy Modelling for Datacenters

Methods for modelling energy consumption in datacenters can be broadly classi-
fied into two categories: measuring energy usage at the hardware level [27, 51, 39]
and modelling energy consumption using simulation [13, 18, 36, 63, 140, 163, 167,
181]. Hardware measurement has a huge advantage over the whole-system simula-
tors in terms of speed, so much so that the latter can hardly be used for long-term
applications and very large dataset without applying reduction configurations [47].
However, online energy monitoring and metrics collection systems are of rarity
incurring substantial costs in practice. To our knowledge, the work from Fan et
al. [48] is the first to use theoretical energy models for very large-scale datacenter
power provisioning on live, production workloads.
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Similar to the approach from Economou et al. [47], instead of considering the
full system with fine-grained models, Fan et al. take a helicopter view using metrics
such as CPU utilization and I/O activity at a coarser granularity to estimate energy
consumption. The authors focus on critical power without taking into account en-
ergy losses and cooling power consumption at the datacenter level. Economou et al.
[47] suggest that the power consumption of non-IT infrastructure is by no means
negligible because they amount to 30-50% of the total energy consumption. Figure
2.11 gives an approximate distribution of energy usage in a datacenter with a PUE
value of 2.0 [11], showing that about 50% of the total energy consumption is used
by IT infrastructure. Figure 2.12 offers an overview of the rough proportions of the
energy losses in terms of various IT components operating at peak power [75, 9].

Although non-IT components account for around half of the total power us-
age, Fan et al. [48] argue that in modern datacenters, critical power can accurately
capture the energy consumption for other non-IT facilities in the sense that the dy-
namic power of the non-IT components can be modelled as a static tax proportional
to the critical power in modern datacenters. This estimation can be further facili-
tated by proper calibrations. The authors proposed a power model (Equation 2.12a
and 2.12b) where u is the CPU utilization that is obtained via the operating sys-
tems, which averages across all CPUs, and r, which was set to 1.4 in the original
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experience, is the calibration parameter chosen to optimize the mean square error
(MSE). This model, albeit simple, has been widely adopted in simulating energy
consumption in datacenters.

In this model, the CPU utilization is employed as the single indicator for es-
timating the power consumption of the critical load. Fan et al. demonstrated that
CPU utilization is able to serve as an extremely accurate signal providing vera-
cious results for thousands of machines. Consequently, measurements for addi-
tional loads, e.g., hardware performance meters, are complementary yet unnec-
essary. Furthermore, a sub-/super-linear correlation between power and the CPU
frequency is assumed in this power model. Studies [14, 137, 98, 161, 55] have il-
lustrated that validity of this assumption lies in the fact that DVFS is only applied
to the CPU, not to other components, and the number of states defined in DVFS for
the CPU is finite.

 P(u) = P idle +
(
P max−P idle

)
u (2.12a)

PMSE(u) = P idle +
(
P max−P idle

)
(2u−ur) (2.12b)

In addition to this, whilst advocating the usage of actual peak power as opposed
to the nameplate power (because the latter is so conservative that 80-130% more
machines can be deployed in the case that the nameplate power is targeted), Fan
et al. [48] emphasize the importance of energy management overall power range,
e.g., DVFS. To support such optimization, the authors set a predefined threshold
for the CPU utilization and half the power provisioning of the CPU (whilst leaving
others unchanged) whenever the utilization drops below the threshold. Despite such
DVFS strategy used in their simulation is rather simple, in a cautious measurement,
this strategy results in about 30% reduction in peak power and is capable of saving
around 23% system energy. In addition, servers are idle for a large fraction of
the running time, which consumes about 50-60% of the actual peak power, whilst
they are barely completely inactive, i.e., sleep or standby. Therefore, in terms of
large-scale datacenters consisting of thousands of machines, different sleep states
(C-states) have a limited impact on the energy consumption at the datacenter level.
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Simulator IT Infrasturcture Primary Support Secondary Support Energy Market IntegrationCritical Load DVFS UPS PDU

DCSim [62] 3 7 7 7 7 7

CloudSim [24] 3 3 7 7 7 7

GDCSim [62] 3 7 7 7 3+ 7

CloudSched [154] 3 3 7 7 7 7

DISSECT-CF [115, 88, 87] 3 3 7 7 3+ 7

GreenCloud [17, 156, 94] 3+ 3+ 7 7 7 7

iCanCloud/E-mc2 [26, 124] 3+ 3+ 7 7 7 7

SimGrid [25, 68, 42] 3+ 3+ 7 7 7 7

OpenDC [80, 119] 3 3+ 3+ 3+ 3 3+

Table 2.2: Overview of the nine surveyed datacenter simulators, where the 3 symbol
means that the corresponding energy model is available, the 7 symbol means that it is
unavailable, and + represents advanced support.

Furthermore, over the last decade, many datacenter simulators [154, 24, 61,
155, 115, 88, 87, 62, 17, 156, 94, 26, 124, 68, 42, 25, 97, 112, 111] have been
developed. Some of them embed energy models for different components, includ-
ing both IT and non-IT infrastructure. Such advancements foster the development
of energy-saving algorithms and energy-aware decision-making acknowledging the
benefits brought upon by simulation, such as simplicity, reproducibility, and cost-
friendliness. Table 2.2 gives an overview of nice state-of-the-art datacenter simu-
lators in which the power consumption has been captured to various degrees. As
shown in the table, we are the first to achieve whole power system modelling in
datacenter simulation.
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III
Energy Modelling &

Management

In this chapter, we reason and describe our design of the energy modelling and
management system. We begin by introducing the development pipeline closely
followed in this work (§3.1). Then, in Section 3.2, we detail the requirement engi-
neering process carried out in this work. Finally, we present the architecture of the
entire system as well as its subsystems in Section 3.3.

3.1 Development Pipeline

To achieve a coherent design and reproducible results, we rigorously follow a de-
velopment pipeline shown in Figure 3.1 from the outset, adhering to the code of
conduct in the AtLarge research group.

The first stage in this pipeline is requirement engineering, which will be de-
scribed in detail in the next section (§3.2). Based on the requirements elicited and
documented in the first stage, we then draft our design, outlining more elaborate
specifications. During the implementation stage, we put up and organize ideas
into different categories using Kanban. These ideas are constantly being reviewed
and updated together with the initial design. Furthermore, instead of developing
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 Development Pipeline
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Ideation Coding Continuous
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Continuous
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Unit

Integration

API
Test

 PR-Review

Build
Kanban

Figure 3.1: Development pipeline.

the system in a separate branch, we practice Continuous Integration and Delivery
(CI/CD), which is commonly employed in modern software development. Dur-
ing CI/CD, we develop the system in small, measurable steps, every integration of
which is reviewed by at least one senior engineer from our research group. Testing,
building, and deployment are all instrumented and automated so that the system
is a useable instrument at all times. Next, we conduct regular evaluations of the
system, which provides frequent feedback for previous stages. At last, any changes
to the codebase are carefully documented, facilitating maintenance and future de-
velopment.

3.2 Requirement Engineering

In this section, we detail the first stage of the development pipeline – Requirement
Engineering, which is further modulated into several steps. We first begin with
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eliciting requirements from a variety of facets in the views of stakeholders using
the Six Thinking Hats technique [44] (3.2.1). Next, we conduct analysis on the
elicited requirements through use case modelling in Section 3.2.2. In Section 3.2.3,
we then formally document the analysed requirements, categorized into function
requirements (FRs) and non-function requirements (NFRs). Last, but certainly not
least, we verify and validate the documented requirements in Section 3.2.4 with
experts in both datacenters and the energy market.

3.2.1 Requirement Elicitation

In this section, we first identify and classify potential stakeholders, and then, em-
ploy the Six Thinking Hats approach [44] to explore system requirements.

3.2.1.1 Stakeholders.

The importance of stakeholders is paramount, we, therefore, start with identifying
some potential stakeholders in Table 3.1.

Industry Stakeholders

IT
datacenter managers, datacenter operators, datacenter technicians,
cloud architects, cloud tenants

Energy
consulting firms, energy market operators, power grid system operators,
renewable energy suppliers

Others legislators, end-users of cloud services

Table 3.1: Potential stakeholders.

Having identified potential stakeholders, we classify them into two categories
in Table 3.2: active stakeholders of whom the successfulness of this research is the
predominant interest, and passive stakeholders who more care about whether the
outcome of this work abides by their agreements and rules.
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Category Stakeholders

Active stakeholder
datacenter managers, datacenter operators, consulting firms,
energy market operators, renewable energy suppliers

Passive stakeholder
datacenter technicians, cloud architects, power grid system operators,
legislators, end-users of cloud services

Table 3.2: Stakeholder classification.

3.2.1.2 Change of Perspective.

Now, we employ the Six Thinking Hats method [44] seeking system requirements.
With the purpose of creating new ideas, the colour sequence of hats applied in the
following elicitation is: blue, white, red, green, yellow, black, and blue.

Blue Hat. The role of the blue hat is to manage and control the elicitation. Thus,
we commence the process by explaining the objectives. We aim to find possible
requirements from various perspectives so that the design of this work caters for
the needs of identified stakeholders.

White Hat. Firstly, we summarize facts (Fs) regarding the power grid and data-
center energy management from previous sections (§1.1, §2.4).

F1 By virtue of smart grid functions, activities from energy prosumers are able
to have bidirectional influence in regulating and balancing the power grid.

F2 The capability of the power grid is hitting some limits due to the massive
introduction of renewable energy sources, which features intermittency and
stochasticity caused by a range of sporadic environmental factors.

F3 Datacenters are well suited for regulating and balancing the power grid be-
cause of their unique characteristics such as large capacity, high flexibility
and redundancy, etc.

F4 Datacenters nowadays rarely actively participate in the energy market, pro-
viding little regulation capacity such as DR to the power grid.
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Red Hat. According to the perspective of the red hat, we next express emotions
and feelings of the initiatives. Referring back to Chapter 1, the environmental crisis
is taking its toll at a worrying pace and consequently, the calling for a lower carbon
footprint is at an all-time high. Datacenters play an essential role in our day-to-day
life, whilst with their ever-increasing energy consumption, they are at the front line
of curbing environmental issues. Also, the operational cost resulted from energy
consumption incurs heavy bills on datacenters. People from both the society and
the computing industry are longing for further exploration regarding datacenters’
participation in the energy market.

Green Hat. Chief amongst the spirits of the green hat is creativity, promoting
innovative solutions and new ideas. With this initiative in mind, we propose the
following potential solutions (Ss) to the aforementioned challenges.

S1 We can model the whole datacenter power system, providing datacenters
managers and operators the trending of energy consumption by means of
datacenter simulation.

S2 We can estimate the energy costs in different markets given the (predicted)
workload, supporting the active participation of datacenters in the energy
market.

S3 We can take advantage of available resources such as price forecasts pro-
duced by machine learning methods, facilitating the decision-making in the
energy market.

S4 We can simulate fine-grained energy management configurations such as the
DVFS technique, assisting datacenters in optimizing operational scheduling
and further enabling proactive demand response.

Yellow Hat. Optimism and positivity of the proposed solutions are brought to
the table by the yellow hat, which puts emphasis on the possible advantages and
opportunities. Firstly, regarding S1, we believe knowing is power – providing the
status of the datacenters’ energy consumption visually and quantitatively will em-
power datacenter managers and operators. For S2, diversifying the types of markets
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in which datacenters can participate can give market operators more options when
certain constraints occur in one market, such as the available bids in the intraday
market cannot meet the current energy needs. Also, S2 can leave datacenters with
more leeway under situations where, for example, the workload is not as delay-
tolerant. S3 can prompt enabling cooperation between datacenters and consulting
firms, creating a level playing field in the energy market for datacenters to partic-
ipate. Lastly, S4 can further add values to the synergetic collaborations in S3 by
employing proactive, fine-grained optimizations through low-level energy configu-
rations.

Black Hat. To provide early criticism and judgment before the requirement ver-
ification & validation stage (§3.2.4), the black hat plays devil’s advocate, bringing
up potential difficulties and risks that the proposed solutions could face. With re-
gard to S1, when it comes to datacenter energy modelling, there is a myriad of
factors that have substantial impacts on the energy consumption of datacenters,
for example, the heterogeneity of supporting equipment and machines, the various
topologies, etc. Different from detailed emulations, simulations incur less over-
head but can hardly capture many of those factors. Concerning S2, load prediction
is by no means trivial and can have a great effect on the participation of datacenters
in different markets. Thirdly, the performance of the machine learning methods
from the consulting firm can be both beneficial, if the inference is accurate, and
detrimental if it is not. Thus, it is hard for datacenter managers and operators to
embrace S3 without bounded estimations of the performance impact. In addition,
fine-grained energy management techniques such as DVFS may be too low-level
that could barely make a sizable influence. Further, such optimization could intro-
duce additional overhead to the system. Lastly, experts in the energy industry and
the IT industry may well have drastically different familiarity with datacenter sim-
ulation tools. Consequently, the usability of the developed tool could significantly
vary amongst different user groups.

Blue Hat. To conclude, we first reiterate four major observations (F1 – F4) in
the stage of the white hat. Then, we add on to the facts the emotional elements
entailed by the perspective of the red hat. Next, via the green hat, we propose four
possible solutions (S1 – S4) to overcome the challenges. From the perspective of
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the yellow hat and that of the black hat, we reflect on the potential pros and cons of
the proposed solutions respectively. As a result, we recognize the potential benefits
the proposed solutions can bring to the stakeholders whilst, in the meantime, be
aware of the possible side effects and risks that come along with the positive facet.
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Figure 3.2: Use case diagram of the system.
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3.2.2 Requirement Analysis

In this section, we take results from the previous stage, requirement elicitation, and
put them into the context of the energy modelling and management system that
we are trying to build. Figure 3.2 is a generalized use case diagram, showing the
interactions and communications between the system and various actors. The IT
operator represents the active stakeholders in the IT industry summarized in Table
3.1 and 3.2. As a primary actor, the IT operator should be able to initiate all four
major use cases in the system, namely, modelling datacenter power system, sim-
ulating datacenter energy consumption, estimating energy costs, comparing costs
of different energy markets, making decisions based on ML inferences, and eval-
uating the ML model performance. Another primary actor is the energy market
player, including the active stakeholders in the energy industry (Table 3.1 and 3.2),
and can initiate the last three use cases. The associations between the first three
use cases are “include” since the system should only be able to simulate the power
consumption given a specific power system model and to provide cost estimations
based on simulation results. Similarly, the association between the last two is also
“include” as the performance of the ML inferences should always be measured. In
the case those procurement strategies are provided, the system should allow users
to compare them based on a load prediction in order to mitigate the concern raised
by the Black Hat regarding S2. Unlike active stakeholders, passive stakeholders,
such as legislators and cloud architects, serve as the secondary actor who is primar-
ily concerned with, for example, the validity of the power system model and the
legitimacy of the energy procurement strategies.

3.2.3 Requirement Documentation

In this section, we extract the marrow of the previous analysis and formally doc-
ument the requirements into functional requirements (FRs) and non-functional re-
quirements (NFRs).

Based on the use case analysis in the previous section, we summarize FRs as
follows:
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(we use “the system” to indicate the energy modelling and management system)

FR1 The system should enable users to model the power system of datacenters.

FR2 The system will simulate the datacenter energy consumption given a power
system model when hosting user workloads.

FR3 The system will estimate the energy cost of datacenter operations based on
the results of the workload simulation.

FR4 The system shall demonstrate to users the potential costs in participated mar-
kets.

FR5 The system shall provide users with the ability to compare various procure-
ment strategies.

FR6 The system will empower fine-grained decision-makings for users according
to ML inferences.

Now, referring back to the concerns raised by the Black Hat, we further specify a
list of NFRs below:

NFR1 When modelling the power system of datacenters, the system should incor-
porate heterogeneous topologies, hardware components, etc.

NFR2 When comparing various load-forecast-based procurement strategies, the sys-
tem should be able to assess their impact to an extensive extent.

NFR3 When employing inferences from machine learning methods, the system
should conduct bounded evaluations on the effectiveness of using the pre-
dicted prices.

NFR4 When developing the user interface of the tool, the system should respect
inclusive design, e.g., experts from the energy and the IT industry should
be able to run the system with less than four steps/click and with minimum
prerequisite knowledge.

Page 54 of 142



CHAPTER 3. ENERGY MODELLING & MANAGEMENT 3.2. REQUIREMENT ENGINEERING

3.2.4 Requirement Verification & Validation

Last, but certainly not least, we request experts in both the IT and the energy in-
dustry to examine our requirements and corresponding analyses, seeking any flaws
and conflicts. Table 3.3 lists the experts involved in the verification and validation
process.

Industry Role Size of Infrastructure Dealt w/

Energy Machine Learning Engineer Large
IT Engineer and Scientist Medium
IT Researcher Medium & Small

Table 3.3: Experts involved in requirement verification and validation.
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Figure 3.3: Overview of the architecture of the entire system.
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3.3 System Architecture

In this chapter, we elaborate on the design of the system architecture, teasing it
down layer by layer in the following sections. Firstly, we give an overview of the
architecture of the entire system in Section 3.3.1. Then, in Section 3.3.2, we present
the blueprint of the power support subsystem. Finally, the market extension EEMM
is described in the last section of this chapter (§3.6).

3.3.1 System Overview

Referring back to Chapter 1, datacenter simulators have been widely adopted in
both academia and the industry. OpenDC is one of such simulation tools, which
is easy-to-use with a wide range of state-of-the-art features, for example, capacity
planning [4], modelling serverless computing and hosting ML workloads [119].
This work develops advanced power models and a unified energy resource chain
integrated into the infrastructure of the simulator.

Figure 3.3 dissects the system in a layered manner. Most of the high-level
functionalities are readily available to end-users through the frontend UI and the
code API. IT professionals and experts in the energy industry can access more
functionalities with fine-grained control over the simulator by directly invoking the
infrastructure as a service (IaaS) interface. Such services are provided by one of
six packages, the compute package, which resides in the backend of the simulator.
Via the IaaS interface, users are able to specify detailed simulation setup. The sim-
ulator supports heterogeneous hardware types, topologies, and scenario portfolios.
Moreover, this work further enables users to configure the energy modelling and
management system in a flexible way.

Experts can enable platform-dependent energy models and energy-saving con-
figurations, such as a set of frequency scaling governors in the Linux kernel and
various power estimation models (either generic or machine-specific), as well as
different scaling drivers with customizable P-states. On top of that, users can con-
figure the topology of the power support subsystem, which locates in the power
package and is underpinned by a unified resource chain penetrated throughout the
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system stack. This power support subsystem will be detailed in Section 3.3.2.

The bottom layer of the system represents the physical resources assigned by
users. Instead of using their raw form directly, we abstract all resources into one
single representation with a common unit. This process is realized by first aggre-
gating the resources from all sources (e.g., computing, storage, energy and so on),
next interpreting different resources to unify them into a common unit, and finally,
distributing the resources to support subsystems. Such an abstraction happens in
the resources package, forming the backbone of the power modelling and man-
agement system. In this way, various physical resources with rather different units
can be utilized throughout the system with one common view.

Furthermore, working towards accomplishing native support for functionali-
ties related to the energy market, this work provides an extension of the energy
modelling and management system (EEMM), which will be introduced in Section
3.3.3.
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Figure 3.4: Architecture of a quintessential AC power system of datacenters modelled
in this work.
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3.3.2 Power Support Subsystem

To achieve the FRs documented in Section 3.2.3, the very first premise is reliable
power modelling and flexible energy management, underpinning FR1 and NFR1.
This section describes the core design of the power support subsystem.

First and foremost, according to the study presented in Section 2.4.5, we con-
struct the skeleton of a quintessential datacenter power system, upon which the
power modelling subsystem is built. Figure 3.4 demonstrates the AC power system
modelled in this work. First, the electricity comes into the datacenter from the util-
ity power station. Then, the energy is distributed to two parts, the primary support
in the electrical yard and the secondary support in the mechanical yard. Inside the
datacenter building, the energy passes through the transfer switches and reaches
the UPS systems. The UPS systems will next distribute the energy to several floor
PDUs. These floor PDUs deal with a higher voltage than the rack PDUs which are
directly connected with the servers. Inside of the server, the PSU transform AC
power to DC and power both the computing load and the internal cooling system.
Note that almost all input electricity will ultimately be exiled in the form of heat.
We recognize that such an architecture may well vary from datacenters to datacen-
ters. With this caution in mind, we design the power support subsystem that is
highly customizable.

Figure 3.5 shows the design of the power support subsystem. Components
of the system form four layers, namely, the raw resource layer, the aggregation
layer, the distribution layer, and the resource consumption layer. To support vari-
ous power system topologies, the number of components at each layer can be cus-
tomized by users. The middle two layers are responsible for the core abstraction
of resource interpretation and unification elaborated in Section 3.3.1. Moreover,
from a higher point of view, components in the first two layers serve as power in-
lets that generate and aggregate energy, and the last two serve as power outlets that
distribute and consume energy.

From left to right, the power chain therein starts at various power sources in the
first layer and ends at the IT infrastructure, the server farm. On the contrary, the
reporting of energy use follows exactly the opposite direction. This architecture
facilitates the energy monitoring and data collection mechanisms one abstraction
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Figure 3.5: Architecture of the power support subsystem.

above, directly addressing FR2. The implementation of the power support subsys-
tem described in Chapter 4 closely follows this design.

3.3.3 Market Extension

In this section, we turn our attention to addressing the market-related requirements,
i.e., FR3 to FR6, and NFR2 to NFR4.

Upon the basis of the simulation infrastructure presented in the previous two
sections, we build an extension of the energy modelling and management system
(EEMM). Figure 3.6 demonstrates the architecture of the extension, in which five
core modules work in concert.

Industry experts can directly interact with the extension via the command-line
interface provided by the cli modules in a Unix system. By providing the ex-
tension with the simulation results and market data, including the energy prices in
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various markets, the preprocess module will convert data and feed them into the
market module. Note that this step does not require any extra manual data pro-
cessing from users other than the standard market data from corresponding official
websites 12, which aim at fulfilling NFR4.

The marketmodule estimates the energy consumption and provides insights of
the energy costs in different markets, addressing FR3 and FR4. Moreover, it con-
tains an analyser that inspects the market data and simulates procurement strategies.
Next, these analyses will be passed to the visualizationmodules that visualizes
the statistics for users to compare different strategies (FR5).

Furthermore, to address FR6, the decision module is developed to process
the ML inferences as market signals. It embodies a proactive DVFS scheduler,
supporting users to make fine-grained decisions in response to the market signals.

1https://transparency.entsoe.eu/dashboard/show
2https://www.tennet.org/english/operational_management/system_data_

relating_processing/settlement_prices/index.aspx
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Figure 3.6: Architecture of the market extension of the energy modelling and man-
agement system.
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IV
Implementation

In this chapter, we take a deep dive into the implementation of the system. Firstly,
the development of the energy modelling and management system is introduced
in Section 4.1. Then, we move on to the implementation of the market extension
EEMM in Section 4.2.



ConstantPowerModel P(s) = s (4.1a)

LinearPowerModel P(u) = Pidle + (Pmax−Pidle)u (4.1b)

SquarePowerModel P(u) = Pidle + (Pmax−Pidle )u2 (4.1c)

CubicPowerModel P(u) = Pidle + (Pmax−Pidle )u3 (4.1d)

SqrtPowerModel P(u) = Pidle + (Pmax −Pidle )
√

u (4.1e)

MsePowerModel P(u) = Pidle + (Pmax−Pidle) (2u−ur) (4.1f)

InterpolationPowerModel P(u) = P (u1) + (P (u2)−P (u1)) u−u1
u2−u1

(4.1g)
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4.1 Energy Modelling & Management System

Closely following the design described in Section 3.3, we implement and integrate
the energy modelling and management system into the OpenDC simulator. Figure
4.1 is a simplified UML diagram of the system.

Power models occupy the lower part, of the diagram. These models include
both the generic models and the machine-specific ones that can be further tuned
towards a particular computing platform. These models align with their mathe-
matical formulation shown in Equation 4.1a to 4.1i. Note that these models are
implemented during the Honours research of the author (please see the report [67]
for more details) but are reorganized and improved during this work. These power
models are controlled by two power drivers, and the PStatePowerDriver utilizes
the P-states provided by users to adjust power estimation in discrete steps.

Algorithm 1 illustrates the detailed mechanism of this driver. As described in
Section 2.3.5, we take package-level decisions in line 10 to 12. CPU saturation is
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measured by the metric specified by Equation 2.7 (§2.1) in line 27.

Algorithm 1: P-state scaling algorithm applied in the PStatePowerDriver.
Input:

A list of scaling context C associated with the CPUs of machine;
A map M that contains a set of P-states as keys and power models at each
respective frequency level as values;

Output:
The next P-state;

Data: A power consumption table T for each corresponding P-state in M;
/* Initializing M according to T. */

1 foreach state, powerLevel ∈ T.entries do
2 Choose a power model m ; // Model types can vary from level to level.

3 Instantiate m based on powerLevel;
4 M.put(state, m);
/* Updating the current P-state. */

5 initially target← 0;
6 initially currentUsage← 0;
7 initially isU pdated← f alse;
8 if ∃c ∈C : c has been updated by governors then
9 isU pdated← true;

10 foreach c ∈C do
11 target←max(c.requested, target) ; // Take package-level decisions.

12 currentUsage← c.cpu.speed + currentUsage;

/* Locating the appropriate P-state. */

13 initially pstate← 0;
14 if isUpdated then

// The following can be simplified via a tree map instead of a normal hash map.

15 upperBound←max(M.getKeys());
16 target←min(upperBound, target);
17 levels← sort(T.getKeys()) ; // Sort in ascending order.

18 foreach l ∈ levels do
19 if level ≥ target then
20 pstate← level;
21 break;

22 else
23 pstate← P-state from the last update;
24 foreach cpu ∈ machine.cpus do
25 currentUsage← cpu.speed + currentUsage;

/* Computing the instant power consumption. */

26 model← M.get(pstate);

27 u←
currentUsage

pstate∗C.size
;

28 model.computePower(u);
29 return pstate;
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Moreover, four generic scaling governors are developed, corresponding to the
four governors found in the Linux kernel (§2.3), namely, the powersave, the
performance, the conservative, and the ondemand governors. Note that the
schedutil governor is not included since it is scheduler-dependent, and the gov-
ernor userspace is also excluded as it is nothing but a static governor that can
be easily realized by either the PowerSaveScalingGovernor or the Perfor-
manceScalingGovernor.

Algorithm 2 shows the scaling mechanism realized in the OnDemandScaling-
Governor, and that of the ConservativeScalingGovernor is presented in Al-
gorithm 3.

Algorithm 2: Scaling algorithm in the OnDemandScalingGovernor.
Input:

The load threshold t with default value being 0.8;
The scaling policy P;

Output:
void;

1 if the associated CPU has not been initialized then
2 P.target← P.min;
3 return void;
4 endif
5 if l > t then

/* Proportional scaling.a */

6 P.target← P.min + l∗
P.max−P.min

100
;

7 endif
8 else
9 P.target← P.min;

10 endif
11 return void;

ahttps://github.com/torvalds/linux/blob/master/drivers/cpufreq/cpufreq_
ondemand.c
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Figure 4.1: Simplified UML diagram of the energy modelling and management sys-
tem.
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Algorithm 3: Scaling algorithm in the ConservativeScalingGovernor.
Input:

The load threshold t with default value being 0.8;
The step size s with defaut value being −1.0;
The previous CPU load o;
The current CPU load l;
The scaling policy P;

Output:
void;

1 if the associated CPU has not been initialized then
2 P.target← P.min;
3 return void;
4 endif
5 if s ≤ 0 then
6 s← P.max ∗0.05 ; // Set the step size to the default value in the Linux kernel.a

7 endif
8 else
9 s←min(s, P.max);

10 endif
11 initially, step←−1;
12 if l > t then

/* Checking for load increase. */

13 if l > o then
14 step← +s;
15 else if l < o then
16 step←−s;
17 else
18 step← 0.0;
19 endif
20 endif
21 P.target←min(max((P.target + step), P.min), P.max);
22 o← l;
23 return void;

ahttps://github.com/torvalds/linux/blob/master/drivers/cpufreq/cpufreq_
conservative.c
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The ScalingPolicy is implemented to model the struct cpufreq_pol-
icy object in the Linux kernel, as introduced in Section 2.3. It contains essential
information concerning the associated CPU, as well as the target frequency modu-
lated by the scaling governors. This object is initialized by the SimHypervisors
which operates scaling governors thereof. To achieve a flexible initialization for
various types of CPUs as an effort to address NFR1, the inner interface Scaling-
Governor::Logic is introduced, serving as a factory to assist this initialization
process. SimHypervisors are managed at runtime by SimHosts that run on a
SimBareMetalMachine. A bare-metal machine is able to invoke PowerDivers at
the physical layer for energy estimation.

With regard to the implementation of the power support subsystem, its devel-
opment adheres to the UML diagram shown in Figure 4.2. Referring back to the
design described in Section 3.3.2, the SimPowerOutlet and the SimPowerInlet
classes represent the two top categories in Figure 3.5, inherited by various com-
ponent classes at different layers. A SimPsu that resides in a bare-metal-machine
directly interacts with the aforementioned PowerDrivers. Furthermore, power
distribution is achieved by a simple max-min fair-sharing policy, illustrated by Al-
gorithm 4. Note that the system has been integrated with OpenDC, which is fully
containerized and can be easily run via docker (NFR4).
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Figure 4.2: Simplified UML diagram of the power support subsystem.
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Algorithm 4: Max-min fair-sharing power distribution algorithm.
Input:

A list of demands D;
The capacity c of the power sources;

Output:
The remaining capacity of the power source;

1 D← sort(D); // Sort D in ascending order.

2 n← sizeof(D);

3 initially, ration←
c

n
;

4 initially, allotments A← an empty list of size n;
/* Initial assignment. */

5 for i← 0 until n by 1 do
6 A[ i ]← r;
7 endfor
/* Handling overloaded demands. */

8 for i← 0 until n by 1 do
9 ration← A[ i ];

10 initially, share← 0.0;
11 if i < (n−1) and ration ≥ D[ i ] then

12 share←
ration−D[ i ]

n− (i + 1)
; // Fair-share over-supplied capacity.

13 for j← i until n by 1 do
14 A[ j ]← A[ j ] + share;
15 endfor
16 A[ i ]← D[ i ];
17 endif
18 else
19 A[ i ]←min(ration, D[ i ]);
20 endif
21 endfor
22 return c−

∑n−1
i A[ i ];

4.2 Market Extension

he core of the extension EEMM is the DVFS scheduler. Referring back to Section
2.3, the major drawback of enabling DVFS is the prolonged execution time. By the
virtue of the dominating quadratic relationship shown in Equation 2.9, the benefit
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of the power saving brought by DVFS will ultimately outweigh the linearly scaled
overhead, i.e., the longer duration. That been said, such an overhead incurred by
using DVFS is by no means negligible and should be further mitigated. Therefore,
we take this factor into account when developing the scheduler.

When hosting traces of the virtual machines (VMs), our simulation currently
does not prolong the execution time of the jobs in the case that the capacity of the
host is reduced. Instead, the overhead of DVFS is reflected by the over-commission
of the CPUs. To elaborate on this further, when the frequency of the CPUs are
restrained to a much lower level, the total capacities of all VMs may well (tem-
porarily) exceed the maximum capacity of their host. We do not scale the VMs
downwards to accommodate the reduced hosting capacity but capture the over-
commissioned CPU cycles instead. Similar circumstances could also occur when
new VMs are spawned, which can lead to exceeding the total capacity of the host.
In contrast, as part of the capacity of the host is released (e.g., some VMs have
finished the execution or the frequency of the CPU is increased), the scaling driver
in our simulator does not stick to the proposed CPU frequencies by the scaling
governor and level down the resource processing speed accordingly.

Thus, the DVFS scheduler should juggle both the energy consumption affected
by switching the scaling governor and the overhead of using DVFS, the CPU over-
commission. To this end, we introduce the concept of damping factor, which is
inspired by the Google PageRank algorithm [141] with different implications and
implementations. The damping factor, in this case, is not a probability value but
a threshold that restrains the increase in the level of CPU over-commission. The
lower the damping factor, the more frequent the scheduler ameliorates the con-
straint on the CPU frequency by switching to a more performant scaling governor.
Algorithm 5 illustrates such a scheduling strategy implemented in the EEMM. We
will further elaborate on the two decision points (line 11 and 15) in Chapter 5.

In an effort to address NFR4, we develop the market extension as a Python
library, which can be easily installed by using the following command in a Unix
system.

$ pip i n s t a l l opendc -eemm

Page 73 of 142



CHAPTER 4. IMPLEMENTATION 4.2. MARKET EXTENSION

Algorithm 5: DVFS scheduling algorithm implemented in the market extension.
Input:

The spot price pS of the next ISP;
The forecasted imbalance shortage price pF of the next ISP;
A list of availabel scaling governors G;
The damping factor d;
The current damping factor counter c;

Output:
The next scaling governor to use;

Data: A serise of datacenter traces T up util now;
1 initially prev← get previous over-commission level from T ;
2 initially curr← compute current over-commission level from T ;
3 initially governor← null;
/* Gauging the over-commission status. */

4 if curr > prev then
5 c ++ ; // Record the increase of the current over-commission level.

6 endif
7 else
8 c−−;
9 endif

10 prev← curr;
/* The first decision point. */

11 if pF ≤ 0 then
12 governor←G.per f ormance;
13 endif
14 else

/* The second decision point. */

15 if pF > pS then
16 governor←G.powersave;
17 endif
18 else
19 if c ≥ d then
20 governor←G.conservative;
21 c← 0 ; // Relax the over-commission meter.

22 endif
23 else
24 governor←G.ondemand;
25 endif
26 endif
27 endif
28 return governor
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V
Evaluation

In this chapter, we elaborate on the experiments conducted to answer RQs de-
scribed in Section 1.2, as well as to meet the FRs and NFRs listed in Section 3.2.3.
We start with detailing the setup in Section 5.1. Then, in Section 5.2, we analyse
the results regarding the participation of datacenters in the energy market. Lastly, in
Section §5.3, we evaluate the performance of the proactive DVFS scheduler pow-
ered by ML methods.

5.1 Experiment Setup

In this section, we describe the simulation model employed in the experiments,
specifically, the market model (§5.1.1), the specifications of machines simulated
(§5.1.2), and the energy models employed for estimating the energy consumption
of the datacenter (§5.1.3).

5.1.1 Market Model

Firstly, referring back to Section 2.4, there are two financial markets prior to the
start of the real-time delivery, the day-ahead market and the intraday market. The
energy prices settled in these two markets are often referred to as the spot price.
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The major difference between the two is that the day-ahead market has one single
settlement for all participants, whereas the intraday market consists of continuous
bilateral trading carried out through the trading day and, in turn, has no common
settlement. As described in Section 2.4.2, the intraday market is where prosumers
conduct the final adjustments to their self-dispatched quantities. Besides the vary-
ing prices, the number and types of products are highly dependent on the surplus/d-
eficit situation of every participant. Therefore, in our experiment, we do not make
any assumption in the participation of the intraday market, i.e., we do not make any
adjustment in the quantity of energy ordered in the day-ahead market before the
start of the actual delivery period.

Secondly, in respect of the day-ahead market and the balancing market, we
focus on the energy market of the Netherlands. In other words, all prices used in
the following experiments are the energy prices of the Netherlands only. Similarly,
although the energy trading system introduced in Section 2.4 applies across the
EU, there are still nuances between different countries. For this matter, we also
only focus on the trading system of the Netherlands, but the experiment results do
not lose their generality as these nuances are rather minute.

Lastly, datacenters normally either have long-term contracts with their utility
companies or buy energy in an on-demand scheme. Since it is not feasible to ob-
tain/disclose the energy prices of the bilateral, long-term contracts, we only focus
on the on-demand scheme. Note that, in practice, datacenters generally do not have
significant discounts through long-term contracts due to the lack of intermittency,
but we, nevertheless, want our experiment results to be inclusive and representative.
Therefore, we consider three on-demand energy prices from low to high summa-
rized in Table 5.1.

Price Level Price [€/MWh] Source

Low 38.0 NieuweStroom B.V. (2021, average) [23]
Medium 56.5 PricewaterhouseCoopers (2017, average) [134]

High 80.4 Essent N.V. (2021, fixed) [125]

Table 5.1: On-demand energy prices considered in the experiments.
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5.1.2 Machine Model

DVFS technology is one of the major interests of this work. Although the fre-
quencies and voltages of P-states in different CPUs are commonly available, their
corresponding consumption levels, however, need to be specially measured by ei-
ther software or hardware power meters. That said, since neither developing an
instrument for measuring the P-state power nor testing the accuracy of the mea-
surements is within the scope of this work, we resort to the existing literature for
this matter.

Frequency Steps [MHz] 1600 1867 2113 2400 2670
Idle Power [Watt] 82.70 82.85 82.95 83.10 83.25

Max. Power [Watt] 88.77 92.00 95.50 99.45 103.0

Table 5.2: P-states consumption levels of the old machine model.

For the consumption levels of P-states, the latest reputable reference that we
found is [61]. However, the CPU therein is old and, therefore, might not be repre-
sentative in terms of its power consumption. To understand the impact of using this
old machine model, we also include a recent machine with a type of CPU released
this year (2021) from the SPEC benchmark [21]. These two machines models are
summarized in Table 5.3, and the P-states consumption levels of the old machine
model are in Table 5.2.

Machine Model Year of Release CPU Base Frequency Cache #Cores #Threads

Old 2007 Intel® Core™2 Quad Q6700 2.66 GHz 8 MB 4 4
New 2021 Intel® Xeon® Platinum 8380 2.30 GHz 60 MB 40 80

Table 5.3: Machine models used in the experiments.

In the experiments, we adopt a set of Business Critical Workload (BCW) traces
[151] from the Dutch IT service provider Solvinity, containing records monitored
over a course of one month. To host the traces properly without overloading/un-
derutilizing the hosts, it is necessary to carefully calculate the resources needed
by each of the two machine models in order to set up the compute service at the
IaaS layer (Figure 3.3). The number of hosts (NHosts) for each machine model is
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computed following Equation 5.1, where Ψd denotes the maximum instant CPU
demand of the traces, the Ψ f represents the maximum frequency of the machine,
and c is the core count of the CPU package. Similarly, the number of memory
units NUnits populated in each machine is calculated by Equation 5.2, where Ψm is
the maximum instant memory request of the traces, and m denotes the size of the
memory unit.

NHosts =

⌈ ⌈
Ψd

Ψ f

⌉ /
c
⌉

(5.1)

NUnits =

⌈ ⌈
Ψm

NHosts

⌉ /
m

⌉
(5.2)

Note that, although the results are rounded up at each step, CPU over-commission
can still occur since the original traces contain requests that exceed the capacity of
the VMs in the first place [149]. Also, the computing node used in the SPEC bench-
mark of the new machine model contains two packages; we set the number of cores
per host to the total number of logical cores, which determine the actual capacity,
as opposed to the number of dies/chips. The detailed setup for each machine model
is summarized in Table 5.4.

Machine Model #Cores/Host #Host Size of Memory Unit [MB] #Memory Units/Host

Old 4 284 4,000 4
New 160 9 3,200 48

Table 5.4: Host setup for each machine model.

5.1.3 Energy Model

Critical Load. According to the results of the author’s Honours research [67],
when no particular computing platform is assumed, the linear power model (Equa-
tion 4.1b) and the square root power model (Equation 4.1e) are able to properly
bound the total energy consumption of the critical load for a specific machine.
Therefore, we use these two power models for the old machine model, which are
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referred to as “LINEAR” and “SQRT” in the following experiments.

In the case that platform-specific data is available, machine-specific models
are preferred over generic ones. Since we have the load-to-power data of the new
machine model from the SPEC benchmark, we use the interpolation power model
(Equation 4.1g) for the new machine model, which is referred to as “INTERPO-
LATION” in the experiments. The load-to-power data of the new machine model
is presented in Table 5.5.

Model
Load 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

New 118.0 188.0 224.0 258.0 273.0 298.0 333.0 380.0 430.0 492.0 633.0

Table 5.5: Target loads to average active power values (in Watts) for the new machine
model.

With regard to the PSU, we employ the power model from another state-of-the-
art datacenter simulator, iCanCloud/E-mc2 [26, 124]. To model the power losses
of PSU, we first compute the percentage of load (ηl) following Equation 5.3 based
on the power draw of the server (Pserver) and then, maps it to the corresponding
energy efficiency (ηe) by Equation 5.4, where both the rated output power (τ) and
the mapping for the (ηe) are specified in manufacturers’ datasheets. In this work,
the energy efficiency of the PSU adhere to the 80 Plus Titanium standard, and the
rated output power τ is set to a value 870 W, which is arbitrary but can be commonly
found in PSU products of datacenter servers.

ηl =
100
τ
·Pserver (5.3)

ηe =


90% if 0 6 ηl 6 10%
94% if 10 < ηl 6 20%
96% if 20% < ηl 6 50%
91% if 50% 6 ηl < 100%

(5.4)

Having computed the energy efficiency, we then accumulate the energy consump-
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tion of the PSU (EPSU) following Equation 5.5.

EPSU =

∫ tPSU

t0

(Pserver ·100)
ηe

−Pserverdt (5.5)

Primary Support. To estimate the energy consumption of the primary sup-
port, specifically, the UPS systems and the PDUs, we employ the power model
proposed by Rasmussen [139], which has been widely adopted in estimating the
power consumption of the UPS and PDU over the years. Rasmussen suggests that
it is insufficient to model the consumption of components of the power support sys-
tem by using only the single parameter, the nameplate loss coefficient, specified in
the datasheets from the manufactures. Instead, their energy consumption should be
captured by two values, the tare loss coefficient (π) that is independent of the load,
and a polynomial loss coefficient that is load-dependent. In the case of PDU, the
load-dependent part of consumption is captured by the proportional loss coefficient
(α), and that of the UPD is captured by the square-law loss coefficient (β). The
coefficients are summarized in Table 5.6, based on the work from Rasmussen.

Component λ α β π

UPS 0.040 0.050 — 0.090
PDU 0.015 — 0.015 0.030

Table 5.6: Coefficient values of the UPS and PDU power model.



α = π UPS−λ UPS

P tare
UPS = λ UPS ·P rated

UPS

P loss
UPS = P tare

UPS +α · (
∑N PDU

i P in
PDUi

)

(5.6)
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β = π PDU−λ PDU

P tare
PDU = λ PDU ·P rated

PDU

P loss
PDU = P tare

PDU +β · (
∑N server

i P in
serveri

)2

(5.7)

We compute the energy consumption of the UPS and PDU using Equations 5.6
and 5.7, where P in denotes the inlet power, P tare denotes the tare power loss, P loss

denotes the total power loss, P rated denotes the nameplate power, N server denotes
the number of active servers, and N PDU denotes the number of attached PDUs.

Secondary Support. Without presuming the consumption rate of every single
piece of equipment, such as the cooling tower, the CRAC, the backup generator,
etc. (Figure 3.4), which can differ greatly from datacenter to datacenter, we make
use of the PUE value to estimate the energy consumption of the entire datacenter
as a whole. We compute the power consumption of the secondary support (P2nd)
using Equation 5.8, based upon the power draw of the servers (P serveri), the UPS
systems (P serveri), and the PDUs (P UPSi).

P 2nd = PUE ·
N server∑

i

P serveri −

N PDU∑
i

P PDUi +

N UPS∑
i

P UPSi

 (5.8)

Page 81 of 142



CHAPTER 5. EVALUATION 5.2. ENERGY MARKET

5.2 Energy Market

In this section, we present the results regarding the participation of datacenters in
the energy market. First and foremost, for RQ2 we ascertain whether it is finan-
cially beneficial for datacenters to participate in the energy market in the first place
and if so, which market to participate in (§5.2.1 and §5.2.2). Next, in Section 5.2.3
we investigate the implications of using the old machine model. Then, in Section
5.2.4 we research the impact of different energy procurement strategies (RQ3), i.e.,
how to participate in the day-ahead and the balancing market? Finally, we investi-
gate why ML methods could be of help in further leveraging profits during market
participation.

5.2.1 Power Loads

The concept of power loads plays a key role in the following experiments. Power
load is the quantity of energy consumed by all equipment in a datacenter. It can
be further categorized into two sub-classes, the base load and the peak load. Base
load is the bare minimum active power required to keep the datacenter up and
running, whereas peak load is demand-dependent. In other words, the base load is
the constant power draw at all times, and peak load can be perceived as the margin
between the power draw at peak demands and the constant base load.

Specifically, we define the active idle power of the datacenter as the base load,
and the proportion of power draw catering for the demands as the peak load. Figure
5.1 demonstrate these two loads estimated by the two power models, where Figure
5.1a shows the instant power loads, and Figure 5.1b shows their cumulative dis-
tribution functions (CDF). Note that we add on the base load to the peak load to
demonstrate their relationship, the peak load would be below the base load other-
wise. As described in Section 5.1, the two generic power models, the LINEAR and
the SQRT are able to serve as the lower and upper bounds for a specific computing
platform. Therefore, the actual power load should lie between the two curves.
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Figure 5.1: Different power loads.

5.2.2 Energy Costs

Now, we investigate the energy costs of the power loads in the day-ahead and the
balancing markets. The market data analysed runs from 30 November 2019 to 11
May 2021, which is about 1.5 years in duration. Figure 5.2 illustrates the distribu-
tion of the energy prices of the two markets. Note that the positive price is the price
that a datacenter, as a balance responsible party (BRP), would have to pay for its
energy use. On the contrary, if the price is negative, datacenters will be paid by the
energy market or the system operator to consume energy (mostly with the purpose
of balancing the power grid). We can see from Figure 5.2 that the balancing market
generally has a much higher positive price than that of the day-ahead market. How-
ever, the level of negative price in the balancing market is much lower than that of
the day-ahead market to a similar extent. Albeit larger variation, the median of the
energy price in the balancing market is slightly below the mean of the energy price
in the day-ahead market. Hence, we conclude that the balancing market demon-
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Figure 5.2: Distributions of day-ahead prices and imbalance prices.

strates a coexistence of high risks (greater positive price and larger variation) and
high profitability (lower negative price and lower median value). Having said that,
is it beneficial in the long run to take part in the day-ahead and/or the balancing
market?

To answer the aforementioned question, we use the EEMM extension to com-
pute the energy costs for the two pow loads of the old machine model under differ-
ent market prices. Figure 5.3a shows the costs of the power loads estimated by the
two power models in different markets (FR4), and Figure 5.3b shows the combined
estimation (FR3), in which the error bars capture the variation therein. As we can
see that participating in either the day-ahead market or the balancing market results
in lower energy cost even compared to the energy cost of the on-demand scheme
of the lowest price. Also, the cost in the balancing market is even lower than that
in the day-ahead market. Therefore, we conclude that it is financially beneficial to
participate in both the day-ahead market and the balancing market (note that, refer-
ring back to Section 2.4.2, it is even compulsory for a BRP to resolve its unbalance
in the balancing market).
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Figure 5.3: Energy Costs of the two power loads in different markets.
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5.2.3 Newer Machine Model

Having ascertained the incentive of participating in both the day-ahead and the
balancing market for RQ2, we now investigate the implementations of using the
old machine model.

Figure 5.4 illustrates the difference in the energy efficiency of the two machine
models in terms of the idle-maximum power ratio. The idle power of the old ma-
chine model takes up more than 80% of its total power capacity. In contrast, the
idle power of the new machine model only accounts for less than 30% of the max-
imum power. Thus, the new machine is drastically more energy efficient compared
to the old one.

When it comes to the power loads, the new machine model yields a much lower
level of energy consumption whilst, in the meantime, exhibits a much greater vari-
ation in the peak load (Figure 5.5). Consequently, the new machine model results
in a ∼73.6% total cost-saving, as shown in Figure 5.6. Most importantly, the por-
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Figure 5.5: Comparison of power loads of the two machine models.

tion of energy costs resulted from the peak load of the new machine model is about
2.5× higher than that of the old machine model. Nevertheless, the conclusion from
Section 5.2.2 still hold, i.e., participating in both the day-ahead and the balancing
markets is beneficial in terms of the energy cost. These observations are important
for generalizing the conclusions in later sections. From the next section onwards,
we come back to the old machine model, through which the core experiments, the
DVFS optimization, is conducted.

5.2.4 Energy Procurement Strategy

Results from previous sections (§5.2.2and §5.2.3) illustrate the reason as to why
datacenters should participate in the energy market. In the following sections,
we investigate the impact of employing different load-forecast-based procurement
strategies for RQ3, i.e., how datacenters should participate? To answer this ques-
tion, we start with stating the assumptions (As) made for the experiments.

A1 Datacenter operators purchase energy in the day-ahead market based on the
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Figure 5.6: Comparison of energy costs of the two machine models.

load forecast of the corresponding day.

A2 The load forecast is perfect. In other words, the load predictions always
precisely match the actual loads of the corresponding day.

A3 Datacenter operators do not deliberately schedule even less energy than the
bare-minimum quantity — the base load.

A4 Datacenters’ participation is abided by the two-price balancing system.

To elaborate on the two assumptions further, one should recall from Section
2.4.1 that market participants self-dispatch the quantity of energy that they are ex-
pected to produce/consume in each hour of the corresponding day during the day-
ahead market (before the gate closure of the spot market). In turn, A1 orientates the
experiment to the average scenario, as the load forecast can be more frequent (e.g.,
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Figure 5.7: Simulated load schedules in the day-ahead market.

on an hour-basis) or be in a less proactive manner (e.g., weekly or even monthly).
Concerning A2, the performance of the load forecasting of a datacenter is the con-
trolled variable here. Hence, we do not presume its level of accuracy/precision.
As for A3, datacenter operators are not expected to intentionally introduce a large
energy deficit in the first place. Concerning A4, the reasoning will be explained in
detail in Section 5.2.4.1.

On the basis of A1 to A3, we define the quantity of energy to schedule in the
spot market (QS ) using Equation 5.9:

QS = Qq(l f ) · s, (5.9)

where l f denotes the load forecast of the next day, q is the quantile of the quantile
function Q, and s is a scalar to apply.
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Figure 5.8: Comparison of energy costs of simulated load schedules.

In Figure 5.7, we use the extension EEMM to demonstrate the resulting load
schedules in the spot market (FR5), where q ∈ [0,1], and s ∈ [0.97,1.30]. Specif-
ically, q < 1.0 models the situation in which datacenter operators schedule less
power than the forecasted load of the day (under-scheduling), and s > 1.0 mod-
els the over-scheduling scenario in which the operators schedule more energy than
the forecasted load. In addition, the “base load” represents the strategy that in
the day-ahead market, the operator only procures the bare-minimum energy whose
quantity is certain. As shown in the figure, the portion where s > 1.0 is sufficiently
high (NFR2), whilst the part where the 0.0 ≥ q < 1.0 is still lower-bounded by the
base load.

Having obtained the load schedules of the day-ahead market, we use the EEMM
extension to compute the total energy cost for every schedule (FR5), where the
energy surplus/deficit is resolved in the balancing market. Figure 5.8 shows an un-
stacked comparison of the energy costs for the simulated schedules. It illustrates
that the more energy ordered in the day-ahead/spot market, the more datacenters
have to pay. In contrast, as the amount of scheduled energy increases, the energy
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cost in the balancing market decreases from positive to negative values. As de-
scribed in Section 5.2, datacenters will be paid back when the energy price is neg-
ative; therein lies the question: can datacenters deliberately (or even maliciously)
schedule arbitrarily large amounts of energy in the day-ahead market so that they
eventually would gain profit during the imbalance settlement? To answer this ques-
tion, we need to take a deep dive into the balancing mechanism of the (EU) energy
market.

5.2.4.1 Imbalance Pricing Systems

pS Spot market price
pB
− Shortage price in the balancing market

pB
+ Surplus price in the balancing market

Q− Quantity of shortage energy of a BRP
Q+ Quantity of surplus energy of a BRP
Q+ Quantity of energy required by downwards regulations
Q↓ Quantity of energy required by downwards regulations
Q↑ Quantity of energy required by upwards regulations
NBSP Number of participated BSPs in the balancing market
NBRP Number of participated BRPs in the balancing market

Table 5.7: Symbols used in defining the two balancing systems.

As indicated in Figure 5.8, there are two balancing systems: one-price and
two-price systems [128]. In the case of the one-price system, if the imbalance of a
prosumer is (unintentionally) helping balance the grid, the prosumer will in effect
earn extra monetary rewards during the imbalance settlement. On the contrary, un-
der the two-price balancing system, such inadvertent assistance is not encouraged
since the price level of the compensation is the same as that of the spot market.
The mechanism of the one-price system follows Equation 5.10, and the two-price
systems adheres to Equation 5.11; Table 5.7 shows the meanings of the symbols
therein.

Page 91 of 142



CHAPTER 5. EVALUATION 5.2. ENERGY MARKET

7060

7080

7100

7120

7140

7160

7180

7200

T
o
ta

l
E

n
er

gy
C

os
t

[€
]

Pricing System

two-price

one-price

fu
ll

lo
ad

b
as

e
lo

ad

q
=

0.
0,

s=
0.

97

q
=

0.
0,

s=
0.

98

q
=

0.
0,

s=
0.

99

q
=

0.
0,

s=
1.

0

q
=

0.
2,

s=
1.

0

q
=

0.
4,

s=
1.

0

q
=

0.
6,

s=
1.

0

q
=

0.
8,

s=
1.

0

q
=

1.
0,

s=
1.

0

q
=

1.
0,

s=
1.

1

q
=

1.
0,

s=
1.

2

q
=

1.
0,

s=
1.

3
Day-Ahead Schedule

0
500

Figure 5.9: Comparison of the two imbalance pricing system.

NBSP∑
i

(
Q↓i · p

B
↓

)
+

NBRP∑
j

(
Q− j · p

B
−

)
=

NBSP∑
i

(
Q↑i · p

B
↑

)
+

NBRP∑
j

(
Q+ j · p

B
+

)
(5.10)

NBSP∑
i

(
Q↓i · p

B
↓

)
+

NBRP∑
j

(
Q− j · p

B
−

)
=

NBSP∑
i

(
Q↑i · p

B
↑

)
+

NBRP∑
j

(
Q+ j · p

S
)

(5.11)

Figure 5.9 demonstrates the difference between the two pricing systems by
comparing their resulting total energy costs. As expected, datacenters cannot gain
extra profit by scheduling much larger quantities of energy than actually needed
under the two-price system, but they can in the case of the one-price system, which
will be prohibited by the system operator. Therefore, datacenters are expected to
comply with the two-price balancing system, and do not intensionally introduce
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imbalance to the power grid. In turn, the fourth assumption (A4) is valid.

Having clarified all assumptions (A1 – A4), we now conduct the final compar-
ison for the energy costs of the simulated schedules (Figure 5.7). To this end, we
stack the energy costs of the two markets in Figure 5.10, where the positive imbal-
ance costs are added on top of the day-ahead costs, whilst the negative ones intrude
into the day-ahead costs from the top, forming the overlaps. As highlighted in red,
the variation between the total energy costs of the simulated schedules is about
0.2% with the minimum being the base-load strategy. In other words, although
the margin is not significant, only scheduling the bare-minimum energy in the day-
ahead market is the preferred strategy. Also, as more and more energy is scheduled
in the day-ahead market (s > 1.0), the total energy cost demonstrates a small yet
gradual and steady increase. Note that this conclusion also applies to the new ma-
chine model because it is not subjected to load variation due to the assumption of
having a perfect load forecast (A2).

5.2.5 Relationship between Prices of the Two Markets

In previous sections, we answered the question of why and how to participate in
the energy market (RQ2, RQ3). In this section, we seek answers to the question
of why ML methods can be of help for datacenters in terms of leveraging the profit
when taking part in the energy market. To this end, we search for potential correla-
tions between energy prices in order to ascertain whether it is reasonable to make
decisions based on simple heuristics.

Firstly, we demonstrate the correlation between the imbalance prices (shortage
and surplus prices) with corresponding regulation states in Figure 5.11 (the latest,
detailed descriptions of the regulation states in the Netherlands can be found in
[157]). The probability distribution functions (PDFs) shown at the top and the right
part illustrate that a substantial number of values concentrate between −200 and
200. Furthermore, from the second-order interpolation between the two prices, the
red curve, we can clearly see a strong linear correlation between the two imbalance
prices. Also, when the regulation state is 2, surplus price is generally higher than
shortage price.
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Figure 5.10: Stacked comparison of the two imbalance pricing systems.

Conversely, when it comes to the inter-market relationship, there is little if any
correlation between the prices of the two markets. Figure 5.12 shows the Pearson
Correlation coefficients (PCC) of the prices. The PCC between the spot price and
the imbalance prices is as little as ∼ 0.19, which would provide datacenters with
little to no help in making heuristics for leveraging profits. Thus, we conclude
that it is not feasible to optimize profits when juggling the two energy markets by
making simple heuristics.

Furthermore, currently, our ML inferences of the imbalance prices can only be
obtained during the balancing market, which will be described in detail in Section
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Figure 5.11: Correlation between imbalance prices with second order interpolation.

5.3. Nevertheless, to illustrate the promising potential of employing ML meth-
ods, we assume for a moment that (1) the predictions can be obtained during the
day-ahead market, and (2) the predictions are perfect. Then, one straightforward
procurement strategy could be: purchasing the (forecasted) full load in the day-
ahead market if pS < pB

−, otherwise, using the base-load strategy, i.e., scheduling
the base load in the day-ahead market and settling the peak load in the balancing
market. This straightforward policy together with the assumption of having the
perfect prediction will provide an upper bound for the potential benefit of using the
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Figure 5.12: Pearson Correlation Coefficients between day-ahead prices and imbal-
ance prices.

early obtained ML predictions for energy procurement. As shown in Figure 5.13, if
such an early forecast can be achieved, we can dramatically reduce the energy cost
further by up to 51.12% compared to the preferred base-load strategy by using the
above mentioned straightforward procurement policy.

5.2.6 Summary

To summarize, in Section 5.2.2 we shed light on the coexistence of high risks
and high profitability when taking part in the energy market. Then, for answer-
ing RQ2 we ascertain the high financial incentive for datacenters to take part in
both day-ahead and the balancing market. Next, we demonstrate the higher energy
efficiency and the large variation of the power load featured by the new machine
model (§5.2.3), which is important for later generalizing the experimental results.

Page 96 of 142



CHAPTER 5. EVALUATION 5.2. ENERGY MARKET

No Prediction in the
Day-Ahead (DA) Market

Having Perfect Predictions of
Imbalance Prices during DA

E
n

er
gy

C
os

t
[€

/M
W

h
]

7198.77 €

3518.88 €

51.12%
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Next, in Section 5.2.4 we illustrate proved that scheduling only the bare-minimum
energy, the base load, is the preferred procurement strategy (RQ3). In Section
5.2.5, we show that it is infeasible to leverage market participation simply by mak-
ing heuristics and that substantial profit could be derived by employing early ML
predictions.
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Figure 5.14: Relationships between CPU demand and CPU usage of the four scaling
governors.

5.3 DVFS Scheduling

In this section, we present the results regarding the performance and effect of the
developed proactive DVFS scheduler, in which ML inferences are employed, to
answer RQ4. Firstly, we demonstrate the behaviours of the DVFS implemented in
our system (§5.3.1). Then, in Section 5.3.2 we investigate the effect of the hyper-
parameter of the scheduler, the damping factor. After that, we conduct bounded
performance estimation, comparing the ML methods with synthetic estimators in
Section 5.3.3.

5.3.1 DVFS Behaviour

First of all, we demonstrate the behaviours of the basic DVFS mechanism described
in Section 4.1. The left plot of Figure 5.14 shows the relationships between the CPU
demand and the actual CPU usage of the four scaling governors, namely, the con-
servative, the ondemand, the powersave, and the performance governors. As
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Figure 5.15: PDF and CDF of the CPU usage of different scaling governors.

shown by the dotted green curve, the performance governor tries its best to meet
the required computation power, whilst the CPU usage of the powersave is capped
under 20% because of the frequency limit imposed on the CPU. The figure on the
right offers a scaled view of that of the right, where the CPU usage is normalized
by the CPU demand. The distribution of their CPU usage is further demonstrated
by Figure 5.15, where the corresponding PDFs and CDFs are presented. As shown
in Figure 5.16, other than the powersave governor, the other three governors have
about the same median value of CPU usage. Also, the ondemand governor exhibits
more concentrated CPU usage compared to that of the conservative. Conversely,
the CPU usage of the conservative has never reached 100% since it proposes fre-
quency changes in consecutive small steps as described in Section 2.3 and 4.1. With
regard to the instant power draw shown in Figure 5.18, the conservative gover-
nor exhibits large fluctuations, again because of the gradual adjustments in CPU
frequency. In contrast, the power consumption of the ondemand governor forms
narrow lanes due to its drastic changes in CPU frequency. As suggested in Figure
5.18, the behaviours of their instant power draw exhibit similar patterns to that of
the CPU usage shown in Figure 5.14.
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Figure 5.16: Detailed distributions of CPU usage of different scaling governors.

When it comes to CPU over-commission, however, the behaviour pattern is
exactly the opposite of that of the CPU usage. As shown in Figure 5.19, the pow-
ersave governor has a much higher CPU over-commission compared to the others.
In contrast, the performance governor has the lowest level since it does not stress
the CPU speed whatsoever. Moreover, to further understand the behaviour of CPU
over-commission, we examine its relationship with other factors.

Firstly, Figure 5.20 shows the relationship between CPU usage and over-commissioned
CPU cycles. The performance governor barely exhibits any trace of over-commission
across different levels of CPU usage, whilst other governors, especially, the pow-
ersave governor, demonstrate significant CPU over-commission. Due to the speed
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Figure 5.17: Comparison of power estimation of the two models for the four scaling
governors.

cap applied, the over-commission level of the powersave governor reaches a dra-
matic level at around 20% of CPU usage. Furthermore, referring back to Figure
5.16, the ondemand governor has narrower interquartile range (IQR) then that of
the conservative. Consequently, even though the overall range of CPU usage
is larger in the case of ondemand governor than the conservative, ondemand
exhibits higher levels of over-commission. Thus, the more concentrated the CPU
usage (i.e., the narrower the IQR), the higher level of CPU over-commission.
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Figure 5.18: Comparison of instant power draw of different scaling governors esti-
mated by two power models.

Secondly, Figure 5.21 illustrates the relationship between the over-commission
and the instant power draw. Although the powersave governor has a much higher
over-commission level, its power is capped because of the frequency limit. Since
both the performance and the ondemand governors exploit the full range of CPU
usage (0–100%), their instant power draw both reaches about 175 W. In contrast, as
the CPU usage of the conservative is mostly below 80% (Figure 5.16), its instant
power is also restrained by about 170 W. Therefore, the level of power draw is not
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Figure 5.19: Instant CPU over-commission level of the four scaling governors.

directly associated with the CPU over-commission but depends upon the actual
CPU usage. Additionally, due to the higher level of over-commission, governors
other than the performance squeeze out the power steps caused by various discrete
P-states.

Lastly, rather than looking at over-commission, we move on to the actual work
committed by the CPU in Figure 5.22. Different from over-commission, there is a
clear connection between the amount of committed work and the level of instant
power draw. In other words, the more work the CPU commits, the higher power
the system requires.
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Figure 5.20: Over-commission at different CPU usage levels of the four scaling gov-
ernors.
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Figure 5.21: Instant power draw at different over-commission levels of the four scal-
ing governors.
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Figure 5.22: Comparison of granted work and instant power draw of the four scaling
governors.
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Figure 5.23: Effect of the damping factor on energy use and CPU over-commission
with third order regression.

5.3.2 Damping Factor

Having studied the behaviours of the DVFS, we now focus on its proactive sched-
uler implemented in the EEMM extension. As described in Section 4.2, the damp-
ing factor is the hyperparameter responsible for ameliorating the stress imposed on
the CPU. To this end, users can use the damping-factor plot shown in Figure 5.23 to
strike a balance between the energy-saving and the level of CPU over-commission.
Specifically, users determine the damping factor according to their desired level of
energy saving and the acceptable level of CPU over-commission. In our case, the
damping factors with which we have experimented run in the range of 0 to 110.
As suggested in Figure 5.23, both the energy consumption and the level of over-
commission have converged when the damping factor is greater than ∼80. Then, we
conduct a third-order regression on both the energy consumption (the red, dotted
curve) and the CPU over-commission (the blue, solid curve). Since we do not as-
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Figure 5.24: Timeline of ML prediction (abbreviation: min. = minute).

sume a specific target for either of the two, we set the damping factor to the “Sweet
Spot”, the intersection between the two regression lines marked by the black dot in
the figure, which is about 12. To reiterate, finding the “Sweet Spot” is not the only
way, certainly not necessarily the best way, for determining the damping factor. In-
stead, users ought to customize it according to their needs regarding energy saving
and the CPU over-commission.

5.3.3 Bounded Comparison

In this section, we describe the use of ML methods to further optimize the profit
for datacenters when participating in the day-ahead and the balancing market. First
and foremost, we elaborate on how the ML inferences are obtained. Referring back
to Section 2.4.1, unlike the day-ahead market, trading happens in the balancing
market every 15 minutes. These trading intervals are often referred to as imbalance
settlement periods (ISPs) and, in turn, there are 96 consecutive ISPs per trading
day. As shown in Figure 5.24, we predict the energy price of the next ISP (ISP
i + 1) during the current ISP (ISP i) on a minute-by-minute basis. In the following
sections, the predictions produced in the first minute are referred to as the first ML
inferences and the last ones are referred to as the last ML inferences. Also, the
average predictions of every ISP are referred to as the average ML inferences. Fur-
thermore, it is worth noting that the closer it gets to the next ISP, the more accurate
the ML inferences are, but the shorter the time that allows datacenter operators to
adjust their optional schedule accordingly. Thus, there is a trade-off between the
performance of the ML methods and the operational leeway that datacenter opera-
tors have.
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5.3.3.1 Defining Metric

NISP Number of ISPs
pS Spot price in the day-ahead market
pB Shortage price in the balancing market
pF Forecasted imbalance price

Table 5.8: Symbols used in defining the AA score.

To measure the performance of the ML methods, we define a metric base upon the
needs of the DVFS scheduler. Referring back to Algorithm 5, there are two decision
points at line 11 and line 15 respectively. The first decision point is to check if the
imbalance price is directly profitable. If it is not, in the second decision point, we
compare the price level of the balancing market with that of the day-ahead market to
determine whether or not to further suppress the CPU frequency. Based upon these
two decision points, we define the agreement accuracy (AA) score by Equation 5.13
as a measure of the performance of the ML methods. The S function (Equation
5.12) checks the sign of the input value, and the 1 is the indicator function. Table
5.8 present the meaning of the used symbols.

S(x) =


+1 x > 0

0 x = 0

−1 x < 0

(5.12)

AA =

∑NISP
i 1

{
1
[
S(pB

i ) = S(pF
i )

]
= 1

[
S(pB

i − pS
i ) = S(pF

i − pS
i )

]}
NISP

(5.13)
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Figure 5.25: Distributions of Gaussian noises with different σ values.

5.3.3.2 Synthetic Predictor

To achieve bounded evaluation (NFR3), we first construct a set of synthetic predic-
tors by adding Gaussian noises to the actual imbalance prices as follows:

p f = pB + E, E ∼N (0,σ) =
1

σ
√

2π
· e−

1
2 ( x

σ )2
, (5.14)

where E is an addictive random variable representing the error term that follows the
Gaussian distribution N(0,σ). Referring back to Figure 2.6, the imbalance prices
are capped by 800 €. Thus, we set σ ∈ [0,1200] in the following experiments to
ensure that variation of errors is sufficiently large.

Figure 5.26 shows the trending of the AA scores of the ML methods in percent-
age and the synthetic predictors as the σ value increases. As previously described,
the later the ML inferences are produced, the better their performance. Indeed, the
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Figure 5.26: Comparison of AA scores of ML methods and synthetic predictors at
different σ levels.

first ML inferences achieve the best AA score, which is about 0.92. The AA score
of average ML inferences comes next (0.84), followed by the score of the first ML
inferences, which is about 0.68. In respect of the synthetic predictors, when σ = 0,
the AA score is a perfect 1.0. It exhibits a plunge when σ ∈ [0,200]. Then, as σ con-
tinues to decrease, the AA scores of the synthetic predictors level off and converge
to 0.20 at last.

Next, we turn our attention to energy consumption and the level of CPU over-
commission. Figure 5.27 shows the comparison of energy consumption and over-
commission between ML methods and synthetic predictors at different σ levels.
Regarding the ML methods, the last ML inferences optimize energy consumption
over over-commission, which, in turn, leads to the lowest energy use but also the
highest over-commission level amongst the ML methods. On the contrary, the first
ML inferences leverage over-commission level over energy consumption, which
results in the highest energy consumption and the lowest over-commission level.
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Figure 5.27: Comparison of energy consumption and over-commission between ML
methods and synthetic predictors at different σ levels.

The ML method of the average inferences achieves average values in both metrics
compared to the ML methods that use the first and the last inferences. Regard-
ing the synthetic predictors, almost all of them, even the best synthetic predictor
(σ = 0), is not able to achieve the same level of energy-saving as that of the worst
performed ML methods, the one using the first ML inferences. When it comes to
the level of over-commission, however, these synthetic predictors perform particu-
larly well, in the sense that when σ > ∼ 100, none of the ML methods can reduce
the over-commission to the same level as that of the synthetic predictors. Hence,
we conclude that the scheduler powered by the ML methods is good at reducing
the energy consumption but perform poorly in reducing the over-commission level,
compared to using the synthetic predictors.
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Figure 5.28: Comparison of energy costs between ML methods and synthetic predic-
tors at different σ levels.

Now, we focus on the total energy cost. Figure 5.28 demonstrates the compar-
ison of energy costs between ML methods and synthetic predictors at different σ
levels. Overall, compared to the synthetic predictors, the ML methods are excellent
at leveraging the energy cost because even the best synthetic predictor (σ = 0) is
bounded by the best ML method. Furthermore, what counts most is that the best-
performed ML method in saving cost is not the one that saves the most energy,
the one using the last ML inferences, but instead, the ML method that employs the
average values achieves the lowest energy cost. This observation further hammers
home the paramount importance of consuming the right amount of energy at the
right time.
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Figure 5.29: Demonstration of indirect demand response, where the energy-
consumption level is adjusted in response to the predicted energy cost from a synthetic
predictor of σ = 50.

5.3.3.3 Indirect Demand Response

Last, but not certainly not least, we look into the indirect DR resulted from the
proactive DVFS scheduling. In Figure 5.29, we visualize the energy consumption
using the solid, red line together with the predicted energy price produced by a
synthetic predictor of arbitrary σ = 50 using a blue, dotted line. As we zoom in to
a short timeframe, we can see the gaps between the two lines: when the energy is
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Figure 5.30: Comparison of total energy consumption for DVFS scheduling.

high, the scheduler tries to reduce the amount of energy consumed and vice versa.
Note that, because of the actual demand and the effect of the damping factor, such
gaps may not always be as obvious.

5.3.4 Summary

In this section, we demonstrate the behaviours of the implemented DVFS in Section
5.3.1 with a focus on CPU over-commission. Then, we determine the hyperparam-
eter, the damping factor, of the scheduler using the damping factor plot (§5.3.2).
After that, by conducting bounded comparisons between the ML methods and the
synthetic estimators, we show that the ML methods are good at optimizing the
energy consumption and the cost, whereas they are not as performant in curbing
the over-commission level. Lastly, we visualize the energy consumption level of
the resulting DVFS schedule together with a randomly chosen synthetic predictor,
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Figure 5.31: Comparison of total CPU over-commission for DVFS scheduling.

illustrating the indirect DR.

As shown in Figure 5.30, if we take the best results amongst the ML methods,
we reduce about 2.1% energy consumption compared to that of the performance
governor. Such an energy saving on this single workload is roughly the equivalent
of the annual energy consumption of two Dutch households [165]. With regard
to CPU over-commission, DVFS scheduling powered by the ML methods results
in about 39% improvement compared to that of the powersave governor (Figure
5.31).

Finally, regarding the energy cost, together with the base-load procurement
strategy (i.e., schedule the bare-minimum energy in the day-ahead market and settle
the peak load in the balancing market), the proactive DVFS scheduler powered by
ML methods achieves a 2.6% of reduction in energy cost compared to the case
where it is disabled. Moreover, the cost reduction is about 56.4% compared to the
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Figure 5.32: Comparison of total energy costs for DVFS scheduling.

on-demand scheme of high price.

In fact, we believe the results are rather conservative because they are produced
by the old machine model whose peak load only takes up a tiny portion of its overall
power load (Figure 5.6). Furthermore, the variations in power load between energy
states of the old machine model are much smaller than that of the new machine
model, as illustrated in Figure 5.5. In other words, the fraction of energy cost
that can be leveraged is minuscule (5.3). Therefore, the advantage of the proactive
DVFS scheduling has not been fully exploited. Hence, if a newer machine model
were available, the above results would be expected to be much more significant.
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VI
Conclusion

In this last chapter, we first summarize all conclusions drawn from previous chap-
ters to provide answers to research questions RQ1 to RQ5 in Section 6.1. Then, we
reflect on the limitations of this work (§6.2) as well as lay out potential directions
of future work (§6.3).

6.1 Answers to Research Questions

Answering RQ1. In this work, we extend the OpenDC simulator with advanced
energy models so that it is able to model the whole power system of a typical
datacenter in a flexible and highly customizable way. In Section 3.3, we present
the design of the energy management and modelling system, and in Section 4.1, we
describe the detailed implementations of the system and its subsystems.

Answering RQ2. To answer this and the following RQs, we first develop a
market extension of the energy management and modelling system. Then, by using
this tool, we show that there is a strong financial incentive for datacenters to partic-
ipate in both the day-ahead market and the balancing market, as substantial profit
can be derived by doing so (§5.2.2).
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Answering RQ3. By simulating different load-forecast-based procurement strate-
gies in Section 5.2.4, we demonstrate that the most economical strategy is the base-
load strategy, i.e., scheduling only the bare-minimum amount of energy, the base
load, in the day-ahead market and resolve the peak load in the balancing market.

Answering RQ4. Firstly, we develop a proactive DVFS scheduler powered by
ML methods that can save energy whilst curbing the level of CPU over-commission
(§4.2). In Section 5.3, we employ the DVFS scheduler to make fine-grained deci-
sions in order to leverage the profit when participating in the energy market. Fur-
ther, we carry out bounded comparisons between the ML methods and synthetic
predictors (§5.3.3.2), showing that the ML methods are excellent at reducing both
the energy consumption and the cost, whilst not as performant in curbing the CPU
over-commission. Lastly, in Section 5.3.4, we demonstrate that the DVFS sched-
uler is able to save about 2.1% of energy compared to the performance governor
and to improve about 39.2% of CPU over-commission compared to the powersave
governor. Such an energy saving on this single workload is roughly the equivalent
of the annual energy consumption of two Dutch households (§5.3.4). Moreover, to-
gether with the base-load procurement strategy, the scheduler is able to save about
56.4 % energy cost compared to the on-demand scheme of high price. Furthermore,
we conclude in Section 5.3.4 that these results are conservative and are expected to
be more significant on newer machine models.

Answering RQ5. To meet the requirements of this RQ, we follow a carefully
designed development pipeline from the onset (§3.1) and conduct rigorous require-
ment engineering in Section 3.2. The software artefacts are created and maintained
using strict software engineering methods. As a result, both the datacenter sim-
ulator and its extension EEMM can be run with a few clicks and/or simple shell
commands, without requiring excessive prerequisite knowledge or any manual data
preprocessing from users.

Page 119 of 142



CHAPTER 6. CONCLUSION 6.2. LIMITATIONS

6.2 Limitations

Whilst acknowledging the promising results, we recognize the limitations thereof
as well. In this section, we elaborate on the limitations and their corresponding
mitigations.

Internal Limitation. In our experiments, we do not assume any specific ma-
chine types or computing platforms except for the new machine model. Conse-
quently, the estimation of energy consumption may not be particularly representa-
tive. To mitigate this limitation, we use the knowledge gained from our previous
studies, employing the linear model and the square-root model as the lower and up-
per bound respectively. In this way, the variation of the total energy consumption
is bounded to a certain range.

Construct Limitation. As introduced in Section 2.4, the energy demand is
inelastic. Thus, the market prices, albeit a good indicator and predictor, may not
be able to satisfactorily capture the demand-supply balance in the power grid at all
times. Nevertheless, as introduced in Chapter 1, this is the inherent disadvantage
of the indirect DR approach. As the functions of the smart grid and the design of
the energy market advance, we believe the energy prices will become increasingly
responsive.

External Limitations. Although we strive to make our scientific tools more
user-friendly and easy to use, users can still use them incorrectly and, in turn, pro-
duce invalid results. For example, the market data from ENTSO-E is in CET, whilst
data from TenT is in GMT, so users may well feed the software with inputs that have
mismatched timestamps. To mitigate this limitation, we write detailed documenta-
tion and make tutorials with examples 1 2.

1http://opendc-eemm.rtfd.io
2https://github.com/atlarge-research/opendc#documentation
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6.3 Future Work

According to our industry partners, energy planning in datacenters using simulation
and modelling has been quickly gaining popularity as higher degrees of volatility
caused by renewable energy sources are introduced to the market. Yet, the inter-
section between the energy market and datacenter simulation is still far from been
fully explored. In this section, we identify potential directions of future research by
means of questions; the following is a non-exhaustive list of such questions in no
particular order.

1. How feasible and beneficial is it for individual datacenters to serve as BSPs
instead of BRPs?

2. How can we develop a convenient and liable tool to measure P-state con-
sumption levels, which will enable flexible experiments on more machine
models?

3. What is the impact of employing not only the energy price but also the fre-
quency level of the power grid (with less frequent grid monitoring and com-
munication) in datacenters’ decision-making on their market participation?

4. How to improve the algorithms of resource allocation (e.g., power distribu-
tion, VM scaling/placement, etc.) in response to market signals?

5. What is the effect of core-level P-state frequency scaling on datacenters’ par-
ticipation in DR programmes?

6. How can we improve the design of the energy market to incentivize datacen-
ters’ active participation?

7. How can we optimize the direct participation in multiple markets across sev-
eral, geographically distributed datacenters?

8. How to orchestrate redundancies of datacenters (e.g., PSU, UPS, etc.) to
provide indirect DR?

9. How can we tune the proactive scheduler base upon specifications in the
SLA?
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6.4 Summary

In this work, we first model the entire power system of a quintessential datacenter.
By conducting simulation on real-world traces, we then demonstrate the substan-
tial financial incentive for individual datacenters to directly participate in the energy
market, specifically, the day-ahead and the balancing markets. In turn, we suggest
a new short-term, direct scheme of market participation for individual datacenters
in place of the current long-term, inactive participation. Furthermore, we develop a
novel proactive DVFS scheduling algorithm that is able to both reduce energy con-
sumption and save the energy cost for datacenters when participating in the energy
market. Also, in developing this scheduler, we propose an innovative combina-
tion of ML methods and the DVFS technology that is able to provide the power
grid with indirect DR in an effort to combat the challenges brought by renewable
energy sources.

Besides the aforementioned potential societal and economic impacts, we de-
velop and open source scientific tools, bridging the gap between domain knowl-
edge, and sharing our data and experimental results with the community without
reservation. Last, but certainly not least, with all these efforts, we believe that we
have opened a new research line; as such, we call for collaborations from both the
industry and academia to help datacenters actively join the smart grid to tackle the
climate crisis together.
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