Automatic Target Recognition

The Technical Challenge for Autonomous Weapons

Hongyu He hongyu.he@vu.nl

Autonomous Weapons are a Legal & Ethical minefield

A classification of Weapon systems

Automated

Semi-Autonomous

Autonomous

Automated

System is <u>pre-programmed</u> in a specific manner and <u>cannot adapt</u> its function outside those parameters.

"Fire-and-forget"

Semi-Autonomous

A system is essentially an automated weapon or that has some degree of self-function but this function is permanently supervised by a human operator. "human in the loop" "human on the loop"

Autonomous

An automated weapon that can <u>adapt its function</u> to changing circumstances.

Why is Automatic Target Recognition (ATR) important?

It's the eye

ATR of Ground Targets

A general-purpose automatic target recognition system does not exist.

— Steven K.Rogers

(Air Force Institute of Technology, USA)

Tracked target

Secondary target

Why not human-only?

- Radar images are not interpretable by humans
- But computers can, and they are more efficient

How does it work?

Image processing + Maching learning

(Collect) image data

Using UVA (drone) to generate a profusion of data

Pre-processing (images)

Information Extraction

Classification: Method 1 - Template Matching

Classification: Method 1 - Template Matching

Classification: Method 2 - Feature-based

Classification: Performance

Performance

Target Called		M1	Т80	T72	M60	M551
	M1	.80	.03	.01	.06	.02
	Т80	.06	.76	.06	.01	0.0
	T72	.02	. 18	.92	.03	0.0
	M60	.12	.01	.01	.88	.03
	M551	0.0	.02	0.0	.02	.95

Target Truth

Performance

Send Target Reports

ATR searched for target ATR identified target ATR sent target to analysts Why doesn't ATR kill the target?

Semi-Autonomous not Autonomous !!!

Existing benefits of automated processing

Number of people required

Time required

Why not Fully-Autonomous?

Challenge 1: Easy to be confused

	ATR System Output				
	Declaration				
Truth	Blue1	Blue2	Red1	Red2	PCC
Blue1	0.78	0.03	0.06	0.13	0.78
Blue2	0.01	0.95	0.02	0.02	0.95
Red1	0.10	0.03	0.83	0.04	0.83
Red2	0.02	0.01	0.03	0.95	0.95
PCL	0.86	0.93	0.88	0.83	

	ATR System Output				
	Declaration				
Truth	Blue1	Blue2	Red1	Red2	PCC
Blue1	0.78	0.03	0.06	0.13	0.78
Blue2	0.01	0.95	0.02	0.02	0.95
Red1	0.10	0.03	0.83	0.04	0.83
Red2	0.02	0.01	0.03	0.95	0.95
Conf1	0.24	0.28	0.22	0.27	N/A
Conf2	0.28	0.16	0.31	0.25	N/A
PCL	0.55	0.65	0.56	0.57	

Challenge 2: The enormous variability of targets

M113

M110

M548

Challenge 3: The enormous variability in environments

Target Complexity

Environment Complexity

Scene :				
Nb. targets	0 1 10 unknown			
Nb. variants	1 known estimated unknown			
Clutter	uniform (field) dense & complex (urban, forest)			
Performance :				
Level	detection classification (rough fine) identification technical analysis			
Nb.Target/class	1 10 all targets on scene			
Time to	days hours minutes real time			
Error (PFA)	10% 1% 5e-3%			
Success (PD)	50% 80% 90% ~100%			
Cost	« Free » radar cost multi radars &/ collections			
Reference :				
Ref. Data	Photos expert 3D CAD (rough fine) ISAR/turntable SAR			
Radar(s) mode	monolook multi-looks multi-aspects			
Side orders	bandwidth channels (freq., polar., InSAR) multi sensors			

Challenge 4: The target is moving

Challenge 4: The target is moving

Challenge 5: Tradeoffs - FA, Accuracy and Speed

True-positive:

an instance of class A is correctly classified as class A

False-Alarms:

an instance that is not from A is wrongly classified as in A **Dangerous !!!**

ACCURACY

State-of-the-art image recognition perform on par with humans

Relative Confusion	A1	A2
Human succeeds, GoogLeNet succeeds	1352	219
Human succeeds, GoogLeNet fails	72	8
Human fails, GoogLeNet succeeds	46	24
Human fails, GoogLeNet fails	30	7
Total number of images	1500	258
Estimated GoogLeNet classification error	6.8%	5.8%
Estimated human classification error	5.1%	12.0%

[1] Russakovsky, O., Deng, J., Su, H. et al. Int J Comput Vis (2015) 115: 211. https://doi.org/10.1007/s11263-015-0816-y

But accuracy depends on operating conditions

	Original image	Image with noise
VGG-16	91.24%	44.02%
GoogLeNet	94.10%	34.02%
AlexNet	84.00%	19.29%
Human	80.50%	75.13%

[2]Geirhos, Robert & H. J. Janssen, David & Schütt, Heiko & Rauber, Jonas & Bethge, Matthias & Wichmann, Felix. (2017). Comparing deep neural networks against humans: object recognition when the signal gets weaker.

But accuracy depends on operating conditions

How close	Original image are we to	Image with noise
VGG-16 deplo	oying	44.02%
fully-autono	mous Lethal	34.02%
AleAutonomou	us Weapon	19.29%
Human Syste	ms?	75.13%

[2]Geirhos, Robert & H. J. Janssen, David & Schütt, Heiko & Rauber, Jonas & Bethge, Matthias & Wichmann, Felix. (2017). Comparing deep neural networks against humans: object recognition when the signal gets weaker.

- ATR can dramatically improve weapon systems' efficiency and decrease unnecessary casualties.
- But many crucial challenges still exist.
- Profound nderstanding the limitations of AI is.
- ATR is still a Semi-Autonomous process: i.e. not able to support autonomous weapons yet (or classified).

Thank you!

Questions?

hongyu.he@vu.nl

- <u>https://hongyuhe.github.io</u>
- https://github.com/hongyuhe

https://www.linkedin.com/in/hongyuhe