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Opening Questions

1. Did you know that energy is a special commodity?

2. Did you know the power grid is “smart” where prosumers can
“communicate” with the grid?

3. Did you know datacenters can also directly participate in the energy market?

e Datacenters (DCs) are large consumers — Important for the Market!
e DCs can be more energy-aware — Important for DCs themselves!
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Introduction: Energy is a Commodity

Limitations:

1. Balance must be kept at all time. Variability of Inelastic
Renewables Demand

2. Large-scale storage 1s uneconomical.
3. Demand cannot be adjusted by setting

prices. finergy
as
4. And more ... Commodity

Physical Constant
Constraints Balancing

@Large Research V VRUE A 4
Massivizing Computer Systems V U Vs 2;2’&?&5&? TU Delft



Introduction: Markets around the Power Grid (in the EU)
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Introduction: Smart Grid

Consumer

e What if the sun doesn’t shine, and the
wind doesn’t blow?

Participation

e The power grid has become “smarter”.
e Demand side management (DSM).

Optimize
Assets

Self-Healing

Renewable

Penetration
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Traditional

Introduction: Demand Response (DR) Energy Sources
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Direct DR e U

+ Accurate and fast
— Computationally and communicatively intensive

Indirect DR

+ Cheaper and more flexible
— Has uncertainty

v
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Upwards Regulation
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Renewable
Energy Sources

@Large Research
Massivizing Computer Systems

VRIJE (;
VU %o FuDelft 7



Introduction: DVFS

e Active power management.

, PoC-V*.F+ P
e DR cannot save energy, but DVFES can!
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Introduction: Opportunities

DCs are well-suited for providing DR.

But Why?

1. Large capacity =
massive energy storage
Elastic load

Large redundancy
Highly automated

A

And more ...

Large Capacity High Flexibility

 Of ~100 MW level Elastic load
e Massive energy storage Del?ly—tolerant
« Effective response Various power load

Datacenter
Characteristics

Redundancy Automation

» Fast backup response e Monitoring penetration
¢ Frequency regulation e Automatic load control
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Introduction: Challenges

DCs nowadays provide little, if any, response to the power grid [Ghatikar et al. “12]
[Glanz et al., ‘12], [Liu et al., ‘13].

But why?

1. Unsuitable market designs for DCs [Johari et al., ‘11] [Xu et al., ‘16];

2. Limitations in the current DR programmes [Sle et al., ‘11] [Liu et al., ‘14];
3. High complexity in proposed methods from existing literature;

4. Expensive experimenting, testing, and evaluating energy-saving

techniques;

= We need a more instrumental solution to incentivize individual DCs!
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Problem Statement (1)

MRQ: How feasible and beneficial is it for individual DCs to directly participate in the
energy market whilst providing the power grid with indirect DR?

RQ1: How to model the power system of datacenters?

RQ2: Is it beneficial for DCs to participate in the energy market in the first place?
(I.e., why should DCs participate?)

RQ3: How to procure energy in the energy markets according to forecasted power load?
(I.e., how to save energy cost?)
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Problem Statement (2)

RQ4: How to optimize energy consumption using DVFS based upon machine learning
(ML) methods?

RQS5: How to create an exploratory tool for problems in this domain, to be used by experts
in both the IT and the energy industry?

Thesis Statement — Individual DCs can and should directly participate in the
energy market to provide the power grid with indirect DR, whilst both saving
their energy costs and curbing their energy consumption.
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Design: Development Plpellne
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Design: Requirement Engineering (1)

Who cares?

Industry | Stakeholders
T datacenter managers, datacenter operators, datacenter technicians,
cloud architects, cloud tenants
Ener consulting firms, energy market operators, power grid system operators,
24 renewable energy suppliers
Others legislators, end-users of cloud services
Category Stakeholders

datacenter managers, datacenter operators, consulting firms,

energy market operators, renewable energy suppliers

datacenter technicians, cloud architects, power grid system operators,
legislators, end-users of cloud services

Active stakeholder

Passive stakeholder
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Design: Requirement Engineering (2)

Simulate Datacenter

IT Energy Consumption

Operator

Compare Costs of

<<include>> |

<<include>>

Estimate Energy Costs

Energy Modelling & Management System

Model Datacenter
Power System

Active Different Markets
Stakeholder . -
extension [)()IIII
Procurement Strategies
/
: :\ Compare Procurement
Market Strategies

Operator

Passive

Stakeholder

Use Machine Learning
Inferences for Fine-Grained
Decision-Making

<<include>>

Evaluate Machine
Learning Inferences
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Design: Power Modelling & Management System™
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Design: DC Power System Model

Electricity In
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Design: Power Support Subsystem*
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Design: Market Extension*

Installation:
$ pip install opendc-eemm

Code:

https://github.com/hongyuhe/opendc-eemm

Doc:

https://opendc-eemm.rtfd.io

* Detailed scheduling algorithm
can be found in the thesis.
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Design: Comparison with the State of the Art

Simulator Crli'tll:cl;:f;?)s;:rrtll;;eFS fj;l;lilll'y S;ll))gort Secondary Support | Energy Market Integration
DCSim [67] v X X X X X
CloudSim [30] v v X X X X
GDCSim [67] v X X X r X
CloudSched [153] v v X X X X
DISSECT-CF [115, 90, 89] v v X X o X
GreenCloud (23, 155, 94] vt v g X X X X
iCanCloud/E-mc* [32, 123] v v X X X X
SimGrid (31,72, 47] - v X X X X
OpenDC [82, 119] v ¥ "~ & ot v " i

Table 2.2: Overview of the eight surveyed datacenter simulators, where the v symbol
means that the corresponding energy model is available, the X symbol means that it is
unavailable, and * represents advanced support.
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Evaluation: Setup (1)

Machine Model Machine Model | Year of Release | CPU | Base Frequency | Cache | #Cores | #Threads

Old 2007 Intel® Core™2 Quad Q6700 2.66 GHz 8 MB 4 4
New 2021 Intel® Xeon® Platinum 8380 2.30 GHz 60 MB 40 80
NHosts = { {i—ﬂ / c Machine Model #Cores/Host #Host Size of Memory Unit [MB] #Memory Units/Host

¥, Old 4 284 4,000 4
Nunis = [ [ } / m } New 160 9 3,200 48

—

N Hosts

Market Model
e  Markets of interest: on-demand, day-ahead, and balancing
e Pricing systems
o  Balancing: two-price system (introduce later).
©  On-demand:  Price Level | Price [€/MWh] | Source

Low 38.0 NieuweStroom B.V. (2021, average) [29]
Medium 56.5 PricewaterhouseCoopers (2017, average) [133]
High 80.4 Essent N.V. (2021, fixed) [124]
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Evaluation: Setup (2)

Energy Model
e (ritical load:
o Square-root model (SQRT) — old machine model (upper bound)
o Linear model (LINEAR) — old machine model (lower bound)
o Interpolation INTERPOLATION) — new machine model

e PSU: 870 W (AC) of 80 Plus Titanium standard
e PUE: 1.58 (global average*)

Traces: Bitbrains http:/qwa.ewi.tudelft.nl/datasets/gwa-t-12-bitbrains

* https://journal.uptimeinstitute.com/data-center-pues-flat-since-2013/
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Evaluation: Setup (3)

Energy Model
1. Critical load:
LinearPowerModel
SgrtPowerModel

AsymptoticPowerModel

2. Primary support:

a = myps — A ups

tare _ . prated
1 P Ups = Aups P jpg

UPS U i

loss tare Nppu pin :
= : : loss _ pt N 2
P Pipsta- (2 P opu,) Pl = PUE 4 .5 = PR

P(u) = Pigie + (Pmax — Pidqie) 4
P(u) = Pigle + (Pmax — Pidie) \/E

P(u) =Pid1e+w(l +u—e—§)

r
B =mppyu—A4ppu

tare _ . prated
1 £pou = 4ppU P ppy

PDU

100
m= T ‘Pscrvcr (5-3)

90% if0<m<10%
94% if 10 <y < 20%

96% if 20% < < 50%
91% if 50% < < 100%

PSU (Pyapver - 100
Epsy =f M = Pgerverdt (5.5)
1] ’h’

Ne = (5.4)

3. Secondary support:

Nserver NPDU NUPS
P = PUE. Z Pppy, +

i i i

P server; — P UPS;
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Power Consumption [MWh)]

Evaluation: Power loads
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Energy Price [€/MWh]

Evaluation: Energy Costs
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Evaluation: Summary 1

It is financially beneficial for DCs

baseload |

to participate in both the day-ahead

and the balancing market.

peakload

fullload

'//////////////lzga:zo.gme

20822.295 €
14004.375 €

1
} 13757424 €

N \I \I \I \I \ 1 13280.732 €
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1020.751 €

Market Price
CZ ondemand-high
[ZZ4 ondemand-med

686.523 € ZZ4 ondemand-low

667.636 € EX day-ahead

641.846 € =1 imbalance
L L L L L L L L L L L L L SR s e
| LN 215805006 @
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! ! ! ! ! ! 14425.061 €
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Evaluation: The benefit of having more recent machines (1)

Normalized Power Draw
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Evaluation: The benefit of having more recent machines (2)
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Evaluation: The benefit of having more recent machines (3)
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Evaluation: Energy Procurement Strategy (1)

1. Assumptions (As):

A1l Datacenter operators purchase energy in the day-ahead market based on the
load forecast of the corresponding day.

A2 The load forecast is perfect. In other words, the load predictions always
precisely match the actual loads of the corresponding day.

A3 Datacenter operators do not deliberately schedule even less energy than the
bare-minimum quantity — the base load.

A4 Datacenters’ participation is abided by the two-price balancing system.
2. Procurement model:

Q° =Quy)-s, (5.9)

where [ denotes the load forecast of the next day, g is the quantile of the quantile
function Q, and s is a scalar to apply.
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Evaluation: Energy Procurement Strategy (2)
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Evaluation: Energy Procurement Strategy (3)

full load Market
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Evaluation: Imbalance Pricing System

Pricing System
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Evaluation: Summary 2
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Evaluation: Why Use ML Methods?
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Evaluation: Summary 3

There is barely any correlation
between prices of the two markets.

— Making decisions by heuristics is
not feasible.

Large profit can be obtained by using
(early) ML inferences.

— ML methods can be of help in
leveraging profits.
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\Y
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No Prediction in the
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Evaluation: DVFS CPU Usage (1)
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Evaluation: DVFS CPU Usage (2)
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Evaluation: DVFS Power Draw (1)
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Evaluation: DVFS Power Draw (2)
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Evaluation: DVFS Over-Commission (1)

x 106

When hosting VM traces, we do not
scale the capacity of each VM
according to the frequency changes
of the hosts.

Instead, we record the
over-commissioned CPU cycles.
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Evaluation: DVFS Over-Commission (2)
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Evaluation

Instant Power Draw [Watt]

Instant Power Draw [Watt]

DVFS Over-Commission (3)
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Evaluation: DVFS Consumption of Committed Work
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Evaluation: Summary 4

1. The overhead of using DVFS is the prolonged execution time, which is
captured by the over-commission in our experiments.

2. The benefit of saving energy will eventually overrun the overhead, as the
execution time is linearly scaled to the frequency, whilst the power draw is
quadratically scaled.

3. The DVFS scheduler should aim to proactively strike a balance between the
benefit and the overhead.
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Evaluation: Scheduler Tuning

Finding the “Sweet Spot” is not
the only way to tune the
scheduler.

= Users should adjust the
factor according to their needs.

We set the factor to 12 for the
following experiments.
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Evaluation: Metric for ML Methods

Timeline of ML prediction:
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Evaluation: Synthetic Predictors
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Evaluation: Bounded Comparison (1)

Agreement Accuracy (AA) (%]
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Evaluation: Bounded Comparison (2)
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Evaluation: Bounded Comparison (3)
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Evaluation: Indirect DR

0.00390 -

0.00385 -

0.00380 -

0.00375 -

Energy Consumption [MWh]

0.00370 -

~~

—— Energy Consumption
-=== Predicted Price

~

v
o I oo

jan

Q0 Jo¥ 3 J i A\ Jot 2\ Jov 25 Jor 29 J “J{\\ 7P \})

Zoom-In View of Demand Response (Price T Power |)

F b

Predicted Energy Price [€/MWh]

55



Evaluation: Total Energy Saving

Energy Consumption [MWHh)]
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Evaluation: Total Over-Commission Improvement

Over-Commissioned CPU Cycles
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Energy Cost [€]

Evaluation: Total Financial Benefit

53.6%
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Note that we believe these results are
conservative, since they are produced
by the old machine model where

(1) The peak load only takes up a
tiny portion of the overall
power load.

The variations in power load
between energy states is small.

2)

In other word, we would expect the
results to be more significant if a
newer machine model were available!
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Conclusion: Answering RQs

RQ1: OpenDC now is able to model the DC power system in a flexible and highly
customizable way

RQ2: There is a strong financial incentive for DCs to participate in the energy market.
RQ3: The base-load procurement strategy is preferred.

RQ4: The proactive DVFS scheduler powered by the ML methods that can reduce
energy cost and consumption whilst constraining the over-head of DVFES.

RQS5: Both the simulator and its extension are ready-to-use and user-friendly.
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Conclusion: Future Work — A New Research Line!

1. How feasible and beneficial is it for individual DCs to serve as BSPs instead of BRPs?

2. How can we develop a convenient and liable tool to measure P-state consumption levels,
which will enable us to use more machine models?

3. What is the impact of employing not only the energy price but also the power grid
frequency in DCs’ decision-making?

4. How to improve the algorithms of resource allocation (e.g., power distribution, VM
scaling/placement) in response to market signals?

5. What is the effect of core-level P-state frequency scaling on DC energy consumption?

6. How can we improve the market design to incentivize DCs to participate?

7. How can we improve the design of the energy market to incentivize datacenters' active
participation?

8. How to orchestrate redundancies (.e.g., PSU, UPS, etc.) to provide DR?
And more ...
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Individual DCs can and should directly participate in the energy market to
provide the power grid with indirect DR, whilst both saving their energy

costs and curbing their energy consumption.

Thank you!

OpenDC.org

& hongyu.nl
hongyu.he@vu.nl

() github.com/hongyuhe

B3 www.linkedin.com/in/hongyuhe
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