
TAB2KNOW:
BUILDING A KNOWLEDGE BASE

FROM TABLES IN SCIENTIFIC PAPERS

HONGYU HE, BENNO KRUIT, JACOPO URBANIBENNO KRUIT, HONGYU HE, JACOPO URBANI

TAB2KNOW: BUILDING A KNOWLEDGE BASE FROM TABLES IN SCIENTIFIC PAPERS

TABLES IN SCIENTIFIC PAPERS

▸ Structured information about scientific process

▸ similar structure across documents

▸ Could support reviews or search

▸ Examples of tables for human readers

How do we automatically process tables that
were not designed for automatic processing?

1

TAB2KNOW: BUILDING A KNOWLEDGE BASE FROM TABLES IN SCIENTIFIC PAPERS

PROBLEMS

▸ Tables must be extracted from PDFs

▸ reconstruct from PDF text-boxes!

▸ Every author uses different conventions

▸ e.g. structure, jargon, layout, formats

▸ No Knowledge Base to link concepts

▸ Interpretation is goal-specific

▸ Both construction and querying
must be user-oriented and flexible

1. INTRODUCTION

Figure 1.1: Results table from ICDAR 2013

task. Tables, on the other hand, provide direct structured data which is easily ingestable

into a knowledge base. Take the table in figure 1.1 taken from the paper presenting the

results for the ICDAR 2013 document recognition competition (1). The information density

in this table is incredible. We see multiple method names, some of which are even directly

linked to citations, with their respective recall, precision and F-score. If the structure of

this table is known, structured data could easily be extracted. This data were to be of

great use for the augmentation of existing knowledge bases. An example relationship that

could be extracted would be a method and its score. The caption "Ranking of submitted

methods to task 1.1" also gives us additional insights. We know that task 1.1 is probably

defined somewhere else in the document, and linking this to the performance of a specific

method is of great value. A simple search in the document provides us with the information

that task 1.1 is "Text Localization". Thus we know:

USTB_TexStar <performs with> 87.75 F-score <on task> Text Localization

Linking this information and making it available through a search engine, would greatly

enhance the experience of researchers.

Another useful application of table data from academic papers would be as follows:

imagine a direct query that provides a researcher with all the papers that report an exact

same technique for the exact same task. This could even be provided to the user in

table mark-up and could clearly show the discrepancies between similar research. Many

computer science experiments are highly reproducible, but will never be questioned since

such contradictory information is never found. This task does not necessarily question

the professionality and integrity of researchers, but could definitely give us great insights

2

2

TAB2KNOW: BUILDING A KNOWLEDGE BASE FROM TABLES IN SCIENTIFIC PAPERS

TAB2KNOW

▸ A system for constructing and querying a Knowledge Graph of
information extracted from tables in scientific papers

1. Structural foundation: simple graph of extracted structure

2. Semantic layer: predicted types of tables and columns

3. Entity layer: similar cells resolved to entity clusters

▸ Based on user-written rules and queries

▸ used as weak supervision for machine learning models

3

TAB2KNOW: BUILDING A KNOWLEDGE BASE FROM TABLES IN SCIENTIFIC PAPERS

WEAK SUPERVISION

▸ Hand-labeling data is expensive and inflexible

▸ … so write labeling functions instead!

▸ Snorkel (Ratner et al, VLDB2020)

▸ DryBell @ Google (Bach et al., SIGMOD 2019)

▸ Overton @ Apple (Christopher Ré et al., ArXiv 2019)

▸ Aggregate weak signals for training ML models

▸ exploit labeling function correlations and sparsity
4

TAB2KNOW: BUILDING A KNOWLEDGE BASE FROM TABLES IN SCIENTIFIC PAPERS

WEAK SUPERVISION
710 A. Ratner et al.

Fig. 1 In Example 1.1, training data is labeled by sources of differing
accuracy and coverage. Two key challenges arise in using this weak
supervision effectively. First, we need a way to estimate the unknown
source accuracies to resolve disagreements. Second, we need to pass on
this critical lineage information to the end model being trained

ingly turning to some form of weak supervision: cheaper
sources of labels that are noisier or heuristic. The most pop-
ular form is distant supervision, in which the records of an
external knowledge base are heuristically aligned with data
points to produce noisy labels [3,7,36]. Other forms include
crowdsourced labels [41,63], rules and heuristics for label-
ing data [47,65], and others [33,34,34,55,64]. While these
sources are inexpensive, they often have limited accuracy
and coverage.

Ideally, we would combine the labels from many weak
supervision sources to increase the accuracy and coverage of
our training set. However, two key challenges arise in doing
so effectively. First, sources will overlap and conflict, and
to resolve their conflicts we need to estimate their accura-
cies and correlation structure,without access to ground truth.
Second, we need to pass on critical lineage information about
label quality to the end model being trained.

Example 1.1 In Fig. 1, we obtain labels from a high-accuracy,
low-coverage Source 1, and from a low-accuracy, high-
coverage Source 2, which overlap and disagree (split-color
points). If we take an unweighted majority vote to resolve
conflicts, we end up with null (tie-vote) labels. If we could
correctly estimate the source accuracies, we would resolve
conflicts in the direction of Source 1.

We would still need to pass this information on to the end
model being trained. Suppose thatwe took labels fromSource
1 where available, and otherwise took labels from Source 2.
Then, the expected training set accuracy would be 60.3%—
only marginally better than the weaker source. Instead we
should represent training label lineage in end model training,
weighting labels generated by high-accuracy sources more.

In recent work, we developed data programming as a
paradigm for addressing both of these challenges by model-
ingmultiple label sources without access to ground truth, and
generating probabilistic training labels representing the lin-
eage of the individual labels. We prove that, surprisingly, we
can recover source accuracy and correlation structurewithout
hand-labeled training data [5,43]. However, there are many

Fig. 2 In Snorkel, rather than labeling training data by hand, users write
labeling functions, which programmatically label data points or abstain.
These labeling functions will have different unknown accuracies and
correlations. Snorkel automatically models and combines their outputs
using a generative model, then uses the resulting probabilistic labels to
train a discriminative model

practical aspects of implementing and applying this abstrac-
tion that have not been previously considered.

We present Snorkel, the first end-to-end system for com-
bining weak supervision sources to rapidly create training
data (Fig. 2). We built Snorkel as a prototype to study how
people could use data programming, a fundamentally new
approach to buildingmachine learning applications. Through
weekly hackathons and office hours held at Stanford Univer-
sity over the past year, we have interactedwith a growing user
community around Snorkel’s open-source implementation.1

We have observed SMEs in industry, science, and govern-
ment deploying Snorkel for knowledge base construction,
image analysis, bioinformatics, fraud detection, and more.
From this experience, we have distilled three principles that
have shaped Snorkel’s design:

1. BringAll Sources to BearThe system should enable users
to opportunistically use labels from all available weak
supervision sources.

2. Training Data as the Interface to ML The system should
model label sources to produce a single, probabilistic
label for each data point and train any of a wide range of
classifiers to generalize beyond those sources.

3. Supervision as Interactive Programming The system
should provide rapid results in response to user super-
vision. We envision weak supervision as the REPL-like
interface for machine learning.

Our work makes the following technical contributions:

A Flexible Interface for SourcesWe observe that the hetero-
geneity of weak supervision strategies is a stumbling block
for developers. Different types of weak supervision operate
on different scopes of the input data. For example, distant
supervision has to be mapped programmatically to specific
spans of text. Crowdworkers andweak classifiers often oper-
ate over entire documents or images. Heuristic rules are open

1 http://snorkel.stanford.edu

123

5

TAB2KNOW: BUILDING A KNOWLEDGE BASE FROM TABLES IN SCIENTIFIC PAPERS

EXAMPLE: TABLE TYPES

Example Templates
You are a (adjective) (identity term).

(verb) (identity term).
Being (identity term) is (adjective)

I am (identity term)
I hate (identity term)

Table 2: Example of templates used to generated

an unbiased test set.

Type Example Words
Offensive disgusting, �lthy, nasty,

rude, horrible, terrible, aw-
ful, worst, idiotic, stupid,
dumb, ugly, etc.

Non-offensive help, love, respect, believe,
congrats, hi, like, great,
fun, nice, neat, happy,
good, best, etc.

Table 3: Example of offensive and non-offensive

verbs & adjectives used for generating the unbi-

ased test set.

abusive samples.

For the evaluation metric, we use 1) AUC scores

on the original test set (Orig. AUC), 2) AUC

scores on the unbiased generated test set (Gen.

AUC), and 3) the false positive/negative equal-

ity differences proposed in Dixon et al. (2017)

which aggregates the difference between the over-

all false positive/negative rate and gender-speci�c

false positive/negative rate. False Positive Equal-

ity Difference (FPED) and False Negative Equal-

ity Difference (FNED) are de�ned as below, where

T = {male, female}.

FPED =

�

t�T

|FPR � FPRt|

FNED =

�

t�T

|FNR � FNRt|

Since the classi�ers output probabilities, equal er-

ror rate thresholds are used for prediction decision.

While the two AUC scores show the perfor-

mances of the models in terms of accuracy, the

equality difference scores show them in terms of

fairness, which we believe is another dimension

for evaluating the model’s generalization ability.

4.2 Experimental Setup

We �rst measure gender biases in st and abt

datasets. We explore three neural models used

in previous works on abusive language classi-

�cation: Convolutional Neural Network (CNN)

Model Embed.
Orig.
AUC

Gen.
AUC

FNED FPED

CNN
random .881 .572 .261 .249
fasttext .906 .620 .323 .327
word2vec .906 .635 .305 .263

GRU
random .854 .536 .132 .136
fasttext .887 .661 .312 .284
word2vec .887 .633 .301 .254

�-GRU
random .868 .586 .236 .219
fasttext .891 .639 .324 .365
word2vec .890 .631 .315 .306

Table 4: Results on st. False negative/positive

equality differences are larger when pre-trained

embedding is used and CNN or �-RNN is trained

(Park and Fung, 2017), Gated Recurrent Unit

(GRU) (Cho et al., 2014), and Bidirectional GRU

with self-attention (�-GRU) (Pavlopoulos et al.,

2017), but with a simpler mechanism used in

Felbo et al. (2017). Hyperparameters are found

using the validation set by �nding the best per-

forming ones in terms of original AUC scores.

These are the used hyperparameters:

1. CNN: Convolution layers with 3 �lters

with the size of [3,4,5], feature map

size=100, Embedding Size=300, Max-

pooling, Dropout=0.5

2. GRU: hidden dimension=512, Maximum Se-

quence Length=100, Embedding Size=300,

Dropout=0.3

3. �-GRU: hidden dimension=256 (bidirec-

tional, so 512 in total), Maximum Sequence

Length=100, Attention Size=512, Embed-

ding Size=300, Dropout=0.3

We also compare different pre-trained em-

beddings, word2vec (Mikolov et al., 2013)

trained on Google News corpus, FastText

(Bojanowski et al., 2017)) trained on Wikipedia

corpus, and randomly initialized embeddings

(random) to analyze their effects on the biases.

Experiments were run 10 times and averaged.

4.3 Results & Discussions

Tables 4 and 5 show the bias measurement exper-

iment results for st and abt, respectively. As

expected, pre-trained embeddings improved task

performance. The score on the unbiased generated

test set (Gen. ROC) also improved since word em-

beddings can provide prior knowledge of words.

However, the equality difference scores tended

to be larger when pre-trained embeddings were

and Dbi is the set of pairs of words and the corresponding
dependency-based cross-lingual contexts. Lw,c is defined in
Equation (3). Bilingual word embeddings can be learned
by optimizing the dependency-based joint learning objective
above, and the algorithm is called DepBiWE.

Cross-lingual phrase-level regularization
We can further augment the DepBiWE model and enhance
the quality of cross-lingual embeddings by making full use
of word alignment information in the parallel corpus with a
cross-lingual regularization in terms of phrase-level semantic
similarities.
In the dependency parse-tree of the parallel sentence pairs,

we define the dependency-phrase p as a word pair (w,wdr−1),
where wdr−1 is the head of w and dr−1 denotes their inverse
dependency relation. The representation of a dependency-
phrase p can be represented as the sum of two word vec-
tors, i.e., p = w + wdr−1 . By incorporating the phrase-
level semantic information, we encourage the representations
of similar dependency-phrases to be close, as we can derive
the aligned dependency-phrases from the aligned words in
the parallel sentence pairs. For example, (review, word) and
(wiederholen,Wörter) in Figure 1 are aligned as dependency-
phrases. The more dependency-phrase pairs are identified in
the parallel corpus, the closer the embeddings for the two
dependency-phrases will be pushed together. By minimizing
the distance between aligned dependency-phrases, the auxil-
iary cross-lingual regularization term can be written as:

LR = γR
∑

(p
l1
i ,p

l2
j)∈Dp

||pl1i − pl2j ||
2, (5)

where Dp is a set of aligned dependency-phrase pairs ex-
tracted from the parallel corpus. The regularization term is
combined with the joint objective in Equation (4) to learn
bilingual word embeddings (DepBiWE+R), where γR is a
tradeoff parameter to control the contribution of the phrase-
level regularization term.

3.3 Integration of Semantic Spaces
Dependency parse-trees can be regarded as the supervised
information from corpus which is valuable yet expensive to
obtain, and only applies to small-scale data. This prohibits
the dependency-based bilingual word embedding model from
being applied to large-scale corpus. On the other hand, the
quality of the parsers affects the performance of dependency-
based embedding methods. Fortunately, the BoW-based em-
beddings learned from large-scale monolingual corpus can
be incorporated as unsupervised information without parsers,
which can be combined with the supervised dependency-
based embeddings via joint learning and make the bilingual
word embedding model more robust to parsing error.
Specifically, the dependency-based bilingual embedding

matrixWs learned with supervised dependency parse-tree in-
formation and the BoW-based monolingual embedding ma-
trixWu learned from large-scale unsupervised data represent
two different semantic vector spaces respectively. To inte-
grate the two different semantic spaces for the better word
representations, we propose a joint learning scheme to en-
courage the model to learn similar representations in bothWs

l1-l2 #S #l1-W #l2-W #l1-V #l2-V
en-de 1.9M 55M 52M 40k 50k
en-fr 2.0M 50M 51M 40k 50k
en-es 1.9M 49M 51M 40k 50k

Table 1: The size of the parallel corpus of three language pairs after
preprocessing the data. #S denotes the number of sentence pairs,
and #li-W represents the number of tokens of the parallel corpus in
language li, while #li-V is the vocabulary size.

and Wu. Two corresponding context matrices Cs and Cu are
learned simultaneously by optimizing the joint objective,

LC = (Lwu,cu + Lws,cs) + γC(Lwu,cs + Lws,cu) (6)
where wu and ws denote two different representations of
the same target word w, while cu and cs correspond to the
BoW context and the DEP context of the target word respec-
tively. Lwu,cu and Lws,cs are the loss functions correspond-
ing to BoW-based and dependency-based bilingual embed-
ding learning respectively, while Lwu,cs and Lws,cu are the
loss functions integrating the supervised dependency-based
embeddings and the BoW-based embeddings learned from
large-scale monolingual corpus, which encourage the model
to learn similar representations in both Ws and Wu. γC is a
tradeoff parameter of the integrated model DepBoW.

4 Experiments
4.1 Data and Setup
We train our dependency-based bilingual models for
the English-German (en-de), English-French (en-fr) and
English-Spanish (en-es) language pairs on the Europarl v7
parallel corpus1 [Koehn, 2005]. To preprocess the dataset, we
lowercase and tokenize all words and select the top words ac-
cording to their term frequencies in the training corpus. The
words with low frequencies for all languages are mapped to
<unk>. The statistics of the parallel corpus for all language
pairs are summarized in Table 1.
In our experiments, the Europarl corpus is used for both

monolingual training and bilingual training. Parameters
for bilingual embedding learning are set as suggested in
BiSkip [Luong et al., 2015] and fixed for all experiments. The
subsampling rate, negative sampling size are set to 1e-4 and
30 respectively; the default learning rate of Stochastic Gra-
dient Decent (SGD) is set to 0.025 and gradually decreases
to 2.5e-6 when training is finished. The dimensionality of all
embedding vectors d is set to 200, and experiments are run
for 10 epochs. We set the monolingual weight α and bilin-
gual weight β in Equation (4) to 1.0 and 4.0 respectively, with
the regularization weight γR =0.1. Word alignments are ob-
tained with FastAlign [Dyer et al., 2013], and a python library
spaCy2 is employed to produce the dependency parse-trees
for all languages in the parallel corpus for the dependency-
based models.
We compare our proposed bilingual word embedding

models based on syntactic dependencies with baselines in-
cluding SGNS [Mikolov et al., 2013c] and DepWE [Levy

1http://www.statmt.org/europarl/
2https://spacy.io/docs/usage/dependency-parse

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

4520

Figure 4: The search latency increase with respect to rerank size.

cost of our models, we compare the online search latency of
different models. The latency of the baseline is 21 ms. And
the relative latency increase of our models over the baseline
are shown in Figure 4.

In Figure 4, the latency of miDNN is small and grows lin-
early with respect to rerank size. But the latency of miRNN
and miRNN+attention grows polynomially. When rerank size
is 50, the latency of miRNN+attentions increases 400% over
the baseline, from 21 ms to 105 ms. Although the RNN mod-
els achieves larger GMV, the computational cost of the RNN
models are huge when rerank size gets big. The large compu-
tational cost is the major drawback of our RNN models.

For RNN models, we use beam search to find a good rank-
ing sequence. The beam size k is a key parameter for beam
search. Larger k means larger search space and usually re-
sults in better ranking results. But larger k also lead to more
computational cost. We studied the GMV and latency in-
crease with respect to beam size. And the results are shown
in Figure 5 and Figure 6.

Figure 5 shows that the GMV increases as beam size
grows. But the GMV increase gets smaller when beam size
gets larger. Figure 6 shows that the latency increases linearly
with respect to beam size, which is in accordance with our
time complexity analysis. A balance of GMV and latency
is needed to choose the value of beam size. And we set the
beam size to 5.

Figure 5: The GMV increase with respect to beam size.

Finally, we summarize our online test results in Table 2.
The rerank size is set to 50 and the beam size for RNN

Figure 6: The search latency increase with respect to beam size.

Models Rerank size Beam size GMV Latency
miDNN 50 - 2.91% 9%
miRNN 50 5 5.03% 58%

miRNN+att. 50 5 5.82% 401%

Table 2: The GMV increase in A/B test.

models is 5. Results in Table 2 show that our mutual in-
fluence aware ranking framework brings a significant GMV
increase over the baseline. The miDNN model achieves a
good GMV increase with only a little latency overhead. The
miRNN+attention model gets the best GMV result but the
latency grows too fast. The miRNN model achieves a very
good GMV increase with much less latency compared to
miRNN+attention. Therefore, if computational cost is very
expensive, the miDNN model is a good choice. In our case
where mild latency increase is acceptable, the miRNN model
is preferred.

5 Conclusion

In this paper, we point out the importance of mutual influ-
ences between items in e-commerce ranking and propose a
global optimization framework for mutual influence aware
ranking for the first time. We incorporate mutual influences
into our models by global feature extension and modeling
ranking as a sequence generation problem. We performed
online experiments on a large e-commerce search engine. To
reduce computational cost, we use our methods as a rerank-
ing process on top of the baseline ranking. The results show
that our method produces a significant GMV increase over
the baseline, and therefore verifies the importance of mutual
influences between items. We also compared the computa-
tional costs of our methods. Our miDNN model noticeably
increases GMV without much computational cost. Our atten-
tion mechanism for RNN model gets the best GMV result.
But the computational cost of our attention mechanism is too
high. Future research will be focused on more efficient atten-
tion mechanisms that increase GMV with less computations.

Acknowledgments

This work receives great help from our colleague Xiaoyi
Zeng. We would also like to thank Xin Li and the Taobao
Search Engineering team for helpful discussions and the sys-
tem engineering efforts.

↵c DP concentration parameter for each c ⌅ V
P0(e|c) CFG base distribution

x Set of non-terminal nodes in the treebank

S Set of sampling sites (one for each x ⌅ x)

S A block of sampling sites, where S ⇥ S
b = {bs}s2S Binary variables to be sampled (bs = 1 ⇤

frontier node)

z Latent state of the segmented treebank

m Number of sites s ⌅ S s.t. bS = 1
n = {nc,e} Sufficient statistics of z
�nS:m Change in counts by setting m sites in S

Table 5: DP-TSG model notation. For consistency, we
largely follow the notation of Liang et al. (2010). Note
that z = (b,x), and as such z = hc, ei.

t 2 ⌃ are terminals; e 2 R are elementary trees;5

} 2 V is a unique start symbol; and ✓c,e 2 ✓ are

parameters for each tree fragment. A PTSG deriva-

tion is created by successively applying the substitu-

tion operator to the leftmost frontier node (denoted

by c+). All other nodes are internal (denoted by c�).

In the supervised setting, DP-TSG grammar ex-

traction reduces to a segmentation problem. We have

a treebank T that we segment into the set R, a pro-

cess that we model with Bayes’ rule:

p(R | T) / p(T | R) p(R) (1)

Since the tree fragments completely specify each

tree, p(T | R) is either 0 or 1, so all work is per-

formed by the prior over the set of elementary trees.

The DP-TSG contains a DP prior for each c 2 V
(Table 5 defines further notation). We generate hc, ei
tuples as follows:

✓c|c,↵c, P0(·|c) ⇠ DP (↵c, P0)

e|✓c ⇠ ✓c

The data likelihood is given by the latent state z and

the parameters ✓: p(z|✓) =
Q

z2z ✓
nc,e(z)
c,e . Integrat-

ing out the parameters, we have:

p(z) =
Y

c2V

Q
e(↵cP0(e|c))nc,e(z)

↵
nc,·(z)
c

(2)

where xn = x(x + 1) . . . (x + n � 1) is the rising

factorial. (§A.1 contains ancillary details.)

Base Distribution The base distribution P0 is the

same maximum likelihood PCFG used in the Stan-
5We use the terms tree fragment and elementary tree inter-

changeably.

NP+

PUNC-(1)

“

N+

Jacques

N-

Chirac

PUNC+(2)

“

Figure 1: Example of two conflicting sites of the same

type. Define the type of a site t(z, s)
def
= (�ns:0,�ns:1).

Sites (1) and (2) above have the same type since t(z, s1) =
t(z, s2). However, the two sites conflict since the prob-
abilities of setting bs1 and bs2 both depend on counts for
the tree fragment rooted at NP. Consequently, sites (1) and
(2) are not exchangeable: the probabilities of their assign-
ments depend on the order in which they are sampled.

ford parser.6,7 After applying the manual state splits,

we perform simple right binarization, collapse unary

rules, and replace rare words with their signatures

(Petrov et al., 2006).

For each non-terminal type c, we learn a stop prob-

ability sc ⇠ Beta(1, 1). Under P0, the probability of

generating a rule A+ ! B� C+ composed of non-

terminals is

P0(A
+ ! B� C+) = pMLE(A ! B C)sB(1�sC)

(3)

For lexical insertion rules, we add a penalty propor-

tional to the frequency of the lexical item:

P0(c ! t) = pMLE(c ! t)p(t) (4)

where p(t) is equal to the MLE unigram probabil-

ity of t in the treebank. Lexicalizing a rule makes it

very specific, so we generally want to avoid lexical-

ization with rare words. Empirically, we found that

this penalty reduces overfitting.

Type-based Inference Algorithm To learn the pa-

rameters ✓ we use the collapsed, block Gibbs sam-

pler of Liang et al. (2010). We sample binary vari-

ables bs associated with each non-terminal node/site

in the treebank. The key idea is to select a block

of exchangeable sites S of the same type that do not

conflict (Figure 1). Since the sites in S are exchange-

able, we can set bS randomly so long as we know m,

the number of sites with bs = 1. Because this algo-

rithm is a not a contribution of this paper, we refer

the reader to Liang et al. (2010).

6The Stanford parser is a product model, so the results in §5.1

include the contribution of a dependency parser.
7Bansal and Klein (2010) also experimented with symbol re-

finement in an all-fragments (parametric) TSG for English.

730

(a) Input (b) Observation

(c) Example (d) Other

6

TAB2KNOW: BUILDING A KNOWLEDGE BASE FROM TABLES IN SCIENTIFIC PAPERS

EXAMPLE: TABLE TYPES

Example Templates
You are a (adjective) (identity term).

(verb) (identity term).
Being (identity term) is (adjective)

I am (identity term)
I hate (identity term)

Table 2: Example of templates used to generated

an unbiased test set.

Type Example Words
Offensive disgusting, �lthy, nasty,

rude, horrible, terrible, aw-
ful, worst, idiotic, stupid,
dumb, ugly, etc.

Non-offensive help, love, respect, believe,
congrats, hi, like, great,
fun, nice, neat, happy,
good, best, etc.

Table 3: Example of offensive and non-offensive

verbs & adjectives used for generating the unbi-

ased test set.

abusive samples.

For the evaluation metric, we use 1) AUC scores

on the original test set (Orig. AUC), 2) AUC

scores on the unbiased generated test set (Gen.

AUC), and 3) the false positive/negative equal-

ity differences proposed in Dixon et al. (2017)

which aggregates the difference between the over-

all false positive/negative rate and gender-speci�c

false positive/negative rate. False Positive Equal-

ity Difference (FPED) and False Negative Equal-

ity Difference (FNED) are de�ned as below, where

T = {male, female}.

FPED =

�

t�T

|FPR � FPRt|

FNED =

�

t�T

|FNR � FNRt|

Since the classi�ers output probabilities, equal er-

ror rate thresholds are used for prediction decision.

While the two AUC scores show the perfor-

mances of the models in terms of accuracy, the

equality difference scores show them in terms of

fairness, which we believe is another dimension

for evaluating the model’s generalization ability.

4.2 Experimental Setup

We �rst measure gender biases in st and abt

datasets. We explore three neural models used

in previous works on abusive language classi-

�cation: Convolutional Neural Network (CNN)

Model Embed.
Orig.
AUC

Gen.
AUC

FNED FPED

CNN
random .881 .572 .261 .249
fasttext .906 .620 .323 .327
word2vec .906 .635 .305 .263

GRU
random .854 .536 .132 .136
fasttext .887 .661 .312 .284
word2vec .887 .633 .301 .254

�-GRU
random .868 .586 .236 .219
fasttext .891 .639 .324 .365
word2vec .890 .631 .315 .306

Table 4: Results on st. False negative/positive

equality differences are larger when pre-trained

embedding is used and CNN or �-RNN is trained

(Park and Fung, 2017), Gated Recurrent Unit

(GRU) (Cho et al., 2014), and Bidirectional GRU

with self-attention (�-GRU) (Pavlopoulos et al.,

2017), but with a simpler mechanism used in

Felbo et al. (2017). Hyperparameters are found

using the validation set by �nding the best per-

forming ones in terms of original AUC scores.

These are the used hyperparameters:

1. CNN: Convolution layers with 3 �lters

with the size of [3,4,5], feature map

size=100, Embedding Size=300, Max-

pooling, Dropout=0.5

2. GRU: hidden dimension=512, Maximum Se-

quence Length=100, Embedding Size=300,

Dropout=0.3

3. �-GRU: hidden dimension=256 (bidirec-

tional, so 512 in total), Maximum Sequence

Length=100, Attention Size=512, Embed-

ding Size=300, Dropout=0.3

We also compare different pre-trained em-

beddings, word2vec (Mikolov et al., 2013)

trained on Google News corpus, FastText

(Bojanowski et al., 2017)) trained on Wikipedia

corpus, and randomly initialized embeddings

(random) to analyze their effects on the biases.

Experiments were run 10 times and averaged.

4.3 Results & Discussions

Tables 4 and 5 show the bias measurement exper-

iment results for st and abt, respectively. As

expected, pre-trained embeddings improved task

performance. The score on the unbiased generated

test set (Gen. ROC) also improved since word em-

beddings can provide prior knowledge of words.

However, the equality difference scores tended

to be larger when pre-trained embeddings were

and Dbi is the set of pairs of words and the corresponding
dependency-based cross-lingual contexts. Lw,c is defined in
Equation (3). Bilingual word embeddings can be learned
by optimizing the dependency-based joint learning objective
above, and the algorithm is called DepBiWE.

Cross-lingual phrase-level regularization
We can further augment the DepBiWE model and enhance
the quality of cross-lingual embeddings by making full use
of word alignment information in the parallel corpus with a
cross-lingual regularization in terms of phrase-level semantic
similarities.

In the dependency parse-tree of the parallel sentence pairs,
we define the dependency-phrase p as a word pair (w,wdr−1),
where wdr−1 is the head of w and dr−1 denotes their inverse
dependency relation. The representation of a dependency-
phrase p can be represented as the sum of two word vec-
tors, i.e., p = w + wdr−1 . By incorporating the phrase-
level semantic information, we encourage the representations
of similar dependency-phrases to be close, as we can derive
the aligned dependency-phrases from the aligned words in
the parallel sentence pairs. For example, (review, word) and
(wiederholen,Wörter) in Figure 1 are aligned as dependency-
phrases. The more dependency-phrase pairs are identified in
the parallel corpus, the closer the embeddings for the two
dependency-phrases will be pushed together. By minimizing
the distance between aligned dependency-phrases, the auxil-
iary cross-lingual regularization term can be written as:

LR = γR
∑

(p
l1
i ,p

l2
j)∈Dp

||pl1i − pl2j ||
2, (5)

where Dp is a set of aligned dependency-phrase pairs ex-
tracted from the parallel corpus. The regularization term is
combined with the joint objective in Equation (4) to learn
bilingual word embeddings (DepBiWE+R), where γR is a
tradeoff parameter to control the contribution of the phrase-
level regularization term.

3.3 Integration of Semantic Spaces
Dependency parse-trees can be regarded as the supervised
information from corpus which is valuable yet expensive to
obtain, and only applies to small-scale data. This prohibits
the dependency-based bilingual word embedding model from
being applied to large-scale corpus. On the other hand, the
quality of the parsers affects the performance of dependency-
based embedding methods. Fortunately, the BoW-based em-
beddings learned from large-scale monolingual corpus can
be incorporated as unsupervised information without parsers,
which can be combined with the supervised dependency-
based embeddings via joint learning and make the bilingual
word embedding model more robust to parsing error.

Specifically, the dependency-based bilingual embedding
matrixWs learned with supervised dependency parse-tree in-
formation and the BoW-based monolingual embedding ma-
trixWu learned from large-scale unsupervised data represent
two different semantic vector spaces respectively. To inte-
grate the two different semantic spaces for the better word
representations, we propose a joint learning scheme to en-
courage the model to learn similar representations in bothWs

l1-l2 #S #l1-W #l2-W #l1-V #l2-V
en-de 1.9M 55M 52M 40k 50k
en-fr 2.0M 50M 51M 40k 50k
en-es 1.9M 49M 51M 40k 50k

Table 1: The size of the parallel corpus of three language pairs after
preprocessing the data. #S denotes the number of sentence pairs,
and #li-W represents the number of tokens of the parallel corpus in
language li, while #li-V is the vocabulary size.

and Wu. Two corresponding context matrices Cs and Cu are
learned simultaneously by optimizing the joint objective,

LC = (Lwu,cu + Lws,cs) + γC(Lwu,cs + Lws,cu) (6)
where wu and ws denote two different representations of
the same target word w, while cu and cs correspond to the
BoW context and the DEP context of the target word respec-
tively. Lwu,cu and Lws,cs are the loss functions correspond-
ing to BoW-based and dependency-based bilingual embed-
ding learning respectively, while Lwu,cs and Lws,cu are the
loss functions integrating the supervised dependency-based
embeddings and the BoW-based embeddings learned from
large-scale monolingual corpus, which encourage the model
to learn similar representations in both Ws and Wu. γC is a
tradeoff parameter of the integrated model DepBoW.

4 Experiments
4.1 Data and Setup
We train our dependency-based bilingual models for
the English-German (en-de), English-French (en-fr) and
English-Spanish (en-es) language pairs on the Europarl v7
parallel corpus1 [Koehn, 2005]. To preprocess the dataset, we
lowercase and tokenize all words and select the top words ac-
cording to their term frequencies in the training corpus. The
words with low frequencies for all languages are mapped to
<unk>. The statistics of the parallel corpus for all language
pairs are summarized in Table 1.

In our experiments, the Europarl corpus is used for both
monolingual training and bilingual training. Parameters
for bilingual embedding learning are set as suggested in
BiSkip [Luong et al., 2015] and fixed for all experiments. The
subsampling rate, negative sampling size are set to 1e-4 and
30 respectively; the default learning rate of Stochastic Gra-
dient Decent (SGD) is set to 0.025 and gradually decreases
to 2.5e-6 when training is finished. The dimensionality of all
embedding vectors d is set to 200, and experiments are run
for 10 epochs. We set the monolingual weight α and bilin-
gual weight β in Equation (4) to 1.0 and 4.0 respectively, with
the regularization weight γR =0.1. Word alignments are ob-
tained with FastAlign [Dyer et al., 2013], and a python library
spaCy2 is employed to produce the dependency parse-trees
for all languages in the parallel corpus for the dependency-
based models.

We compare our proposed bilingual word embedding
models based on syntactic dependencies with baselines in-
cluding SGNS [Mikolov et al., 2013c] and DepWE [Levy

1http://www.statmt.org/europarl/
2https://spacy.io/docs/usage/dependency-parse

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

4520

Figure 4: The search latency increase with respect to rerank size.

cost of our models, we compare the online search latency of
different models. The latency of the baseline is 21 ms. And
the relative latency increase of our models over the baseline
are shown in Figure 4.

In Figure 4, the latency of miDNN is small and grows lin-
early with respect to rerank size. But the latency of miRNN
and miRNN+attention grows polynomially. When rerank size
is 50, the latency of miRNN+attentions increases 400% over
the baseline, from 21 ms to 105 ms. Although the RNN mod-
els achieves larger GMV, the computational cost of the RNN
models are huge when rerank size gets big. The large compu-
tational cost is the major drawback of our RNN models.

For RNN models, we use beam search to find a good rank-
ing sequence. The beam size k is a key parameter for beam
search. Larger k means larger search space and usually re-
sults in better ranking results. But larger k also lead to more
computational cost. We studied the GMV and latency in-
crease with respect to beam size. And the results are shown
in Figure 5 and Figure 6.

Figure 5 shows that the GMV increases as beam size
grows. But the GMV increase gets smaller when beam size
gets larger. Figure 6 shows that the latency increases linearly
with respect to beam size, which is in accordance with our
time complexity analysis. A balance of GMV and latency
is needed to choose the value of beam size. And we set the
beam size to 5.

Figure 5: The GMV increase with respect to beam size.

Finally, we summarize our online test results in Table 2.
The rerank size is set to 50 and the beam size for RNN

Figure 6: The search latency increase with respect to beam size.

Models Rerank size Beam size GMV Latency
miDNN 50 - 2.91% 9%
miRNN 50 5 5.03% 58%

miRNN+att. 50 5 5.82% 401%

Table 2: The GMV increase in A/B test.

models is 5. Results in Table 2 show that our mutual in-
fluence aware ranking framework brings a significant GMV
increase over the baseline. The miDNN model achieves a
good GMV increase with only a little latency overhead. The
miRNN+attention model gets the best GMV result but the
latency grows too fast. The miRNN model achieves a very
good GMV increase with much less latency compared to
miRNN+attention. Therefore, if computational cost is very
expensive, the miDNN model is a good choice. In our case
where mild latency increase is acceptable, the miRNN model
is preferred.

5 Conclusion

In this paper, we point out the importance of mutual influ-
ences between items in e-commerce ranking and propose a
global optimization framework for mutual influence aware
ranking for the first time. We incorporate mutual influences
into our models by global feature extension and modeling
ranking as a sequence generation problem. We performed
online experiments on a large e-commerce search engine. To
reduce computational cost, we use our methods as a rerank-
ing process on top of the baseline ranking. The results show
that our method produces a significant GMV increase over
the baseline, and therefore verifies the importance of mutual
influences between items. We also compared the computa-
tional costs of our methods. Our miDNN model noticeably
increases GMV without much computational cost. Our atten-
tion mechanism for RNN model gets the best GMV result.
But the computational cost of our attention mechanism is too
high. Future research will be focused on more efficient atten-
tion mechanisms that increase GMV with less computations.

Acknowledgments

This work receives great help from our colleague Xiaoyi
Zeng. We would also like to thank Xin Li and the Taobao
Search Engineering team for helpful discussions and the sys-
tem engineering efforts.

↵c DP concentration parameter for each c ⌅ V
P0(e|c) CFG base distribution

x Set of non-terminal nodes in the treebank

S Set of sampling sites (one for each x ⌅ x)

S A block of sampling sites, where S ⇥ S
b = {bs}s2S Binary variables to be sampled (bs = 1 ⇤

frontier node)

z Latent state of the segmented treebank

m Number of sites s ⌅ S s.t. bS = 1
n = {nc,e} Sufficient statistics of z
�nS:m Change in counts by setting m sites in S

Table 5: DP-TSG model notation. For consistency, we
largely follow the notation of Liang et al. (2010). Note
that z = (b,x), and as such z = hc, ei.

t 2 ⌃ are terminals; e 2 R are elementary trees;5

} 2 V is a unique start symbol; and ✓c,e 2 ✓ are

parameters for each tree fragment. A PTSG deriva-

tion is created by successively applying the substitu-

tion operator to the leftmost frontier node (denoted

by c+). All other nodes are internal (denoted by c�).

In the supervised setting, DP-TSG grammar ex-

traction reduces to a segmentation problem. We have

a treebank T that we segment into the set R, a pro-

cess that we model with Bayes’ rule:

p(R | T) / p(T | R) p(R) (1)

Since the tree fragments completely specify each

tree, p(T | R) is either 0 or 1, so all work is per-

formed by the prior over the set of elementary trees.

The DP-TSG contains a DP prior for each c 2 V
(Table 5 defines further notation). We generate hc, ei
tuples as follows:

✓c|c,↵c, P0(·|c) ⇠ DP (↵c, P0)

e|✓c ⇠ ✓c

The data likelihood is given by the latent state z and

the parameters ✓: p(z|✓) =
Q

z2z ✓
nc,e(z)
c,e . Integrat-

ing out the parameters, we have:

p(z) =
Y

c2V

Q
e(↵cP0(e|c))nc,e(z)

↵
nc,·(z)
c

(2)

where xn = x(x + 1) . . . (x + n � 1) is the rising

factorial. (§A.1 contains ancillary details.)

Base Distribution The base distribution P0 is the

same maximum likelihood PCFG used in the Stan-
5We use the terms tree fragment and elementary tree inter-

changeably.

NP+

PUNC-(1)

“

N+

Jacques

N-

Chirac

PUNC+(2)

“

Figure 1: Example of two conflicting sites of the same

type. Define the type of a site t(z, s)
def
= (�ns:0,�ns:1).

Sites (1) and (2) above have the same type since t(z, s1) =
t(z, s2). However, the two sites conflict since the prob-
abilities of setting bs1 and bs2 both depend on counts for
the tree fragment rooted at NP. Consequently, sites (1) and
(2) are not exchangeable: the probabilities of their assign-
ments depend on the order in which they are sampled.

ford parser.6,7 After applying the manual state splits,

we perform simple right binarization, collapse unary

rules, and replace rare words with their signatures

(Petrov et al., 2006).

For each non-terminal type c, we learn a stop prob-

ability sc ⇠ Beta(1, 1). Under P0, the probability of

generating a rule A+ ! B� C+ composed of non-

terminals is

P0(A
+ ! B� C+) = pMLE(A ! B C)sB(1�sC)

(3)

For lexical insertion rules, we add a penalty propor-

tional to the frequency of the lexical item:

P0(c ! t) = pMLE(c ! t)p(t) (4)

where p(t) is equal to the MLE unigram probabil-

ity of t in the treebank. Lexicalizing a rule makes it

very specific, so we generally want to avoid lexical-

ization with rare words. Empirically, we found that

this penalty reduces overfitting.

Type-based Inference Algorithm To learn the pa-

rameters ✓ we use the collapsed, block Gibbs sam-

pler of Liang et al. (2010). We sample binary vari-

ables bs associated with each non-terminal node/site

in the treebank. The key idea is to select a block

of exchangeable sites S of the same type that do not

conflict (Figure 1). Since the sites in S are exchange-

able, we can set bS randomly so long as we know m,

the number of sites with bs = 1. Because this algo-

rithm is a not a contribution of this paper, we refer

the reader to Liang et al. (2010).

6The Stanford parser is a product model, so the results in §5.1

include the contribution of a dependency parser.
7Bansal and Klein (2010) also experimented with symbol re-

finement in an all-fragments (parametric) TSG for English.

730

(a) Input (b) Observation

(c) Example (d) Other

7

TAB2KNOW: BUILDING A KNOWLEDGE BASE FROM TABLES IN SCIENTIFIC PAPERS

EXAMPLE: TABLE TYPES
'DWD�3URJUDPPLQJ

8QODEHOHG�
'DWD��;
�1�SRLQWV�

/DEHOLQJ�IXQFWLRQV
�0�IXQFWLRQV�

/DEHO�0DWUL[
/��1�[�0� Ӻ

▸ Two options for aggregating labels:

▸ Majority Vote

▸ Snorkel Model

▸ Many options for ML model, but must not overfit!
8

TAB2KNOW: BUILDING A KNOWLEDGE BASE FROM TABLES IN SCIENTIFIC PAPERS

ENTITY RESOLUTION

▸ Vlog: Large-scale reasoning on contexts of cell values

▸ e.g. column header, column type, author, …

▸ If similar, merge cell values into entity clusters

9

TAB2KNOW: BUILDING A KNOWLEDGE BASE FROM TABLES IN SCIENTIFIC PAPERS

SUMMARY1. INTRODUCTION

Figure 1.1: Results table from ICDAR 2013

task. Tables, on the other hand, provide direct structured data which is easily ingestable

into a knowledge base. Take the table in figure 1.1 taken from the paper presenting the

results for the ICDAR 2013 document recognition competition (1). The information density

in this table is incredible. We see multiple method names, some of which are even directly

linked to citations, with their respective recall, precision and F-score. If the structure of

this table is known, structured data could easily be extracted. This data were to be of

great use for the augmentation of existing knowledge bases. An example relationship that

could be extracted would be a method and its score. The caption "Ranking of submitted

methods to task 1.1" also gives us additional insights. We know that task 1.1 is probably

defined somewhere else in the document, and linking this to the performance of a specific

method is of great value. A simple search in the document provides us with the information

that task 1.1 is "Text Localization". Thus we know:

USTB_TexStar <performs with> 87.75 F-score <on task> Text Localization

Linking this information and making it available through a search engine, would greatly

enhance the experience of researchers.

Another useful application of table data from academic papers would be as follows:

imagine a direct query that provides a researcher with all the papers that report an exact

same technique for the exact same task. This could even be provided to the user in

table mark-up and could clearly show the discrepancies between similar research. Many

computer science experiments are highly reproducible, but will never be questioned since

such contradictory information is never found. This task does not necessarily question

the professionality and integrity of researchers, but could definitely give us great insights

2

1. INTRODUCTION

Figure 1.1: Results table from ICDAR 2013

task. Tables, on the other hand, provide direct structured data which is easily ingestable

into a knowledge base. Take the table in figure 1.1 taken from the paper presenting the

results for the ICDAR 2013 document recognition competition (1). The information density

in this table is incredible. We see multiple method names, some of which are even directly

linked to citations, with their respective recall, precision and F-score. If the structure of

this table is known, structured data could easily be extracted. This data were to be of

great use for the augmentation of existing knowledge bases. An example relationship that

could be extracted would be a method and its score. The caption "Ranking of submitted

methods to task 1.1" also gives us additional insights. We know that task 1.1 is probably

defined somewhere else in the document, and linking this to the performance of a specific

method is of great value. A simple search in the document provides us with the information

that task 1.1 is "Text Localization". Thus we know:

USTB_TexStar <performs with> 87.75 F-score <on task> Text Localization

Linking this information and making it available through a search engine, would greatly

enhance the experience of researchers.

Another useful application of table data from academic papers would be as follows:

imagine a direct query that provides a researcher with all the papers that report an exact

same technique for the exact same task. This could even be provided to the user in

table mark-up and could clearly show the discrepancies between similar research. Many

computer science experiments are highly reproducible, but will never be questioned since

such contradictory information is never found. This task does not necessarily question

the professionality and integrity of researchers, but could definitely give us great insights

2

Table Extraction1

Naïve KB
Ontology

Table Interpretation2

SPARQL Queries

SPARQL Query 1
SPARQL Query 2
SPARQL Query 3

…

Input: PDF Figure

APIs

Snorkel ‘

Output: KB (with linked entities)
3 Entity Linking

VLog
Rule 1
Rule 2
Rule 3

…

Rules

Assets

≈

≈

≈

≈

Header detectionTable type classification

Column type classification

10

TAB2KNOW: BUILDING A KNOWLEDGE BASE FROM TABLES IN SCIENTIFIC PAPERS

RESULTS: TABLE TYPES

ML model performance
on Tab2Know data

Tab2Know: Building a Knowledge Base from Tables in Scientific Papers 13

Method Acc.

1
st

Row 0.71

Ours 0.76

(a) Header detec-
tion

Model Prec. Recall F1 AUC

SVM 0.71 0.79 0.74 0.86

LR 0.72 0.79 0.74 0.84

NB 0.80 0.82 0.79 0.91

(b) Table type prediction on our corpus

Task MV Snorkel

Table Types 0.50 0.71
Column Types

0.56 0.49
(Our corpus)

Column Types
0.39 0.65

(Tablepedia)

(c) MV vs. Snorkel

Model Prec. Recall F1 AUC

NB 0.52 0.48 0.47 0.87

SVM 0.58 0.56 0.53 0.83

LR 0.58 0.56 0.53 0.85

(d) Column type prediction on our cor-
pus

Model Prec. Recall F1 AUC

Yu et al. [31] 0.82 0.81 0.81 0.90

NB 0.84 0.82 0.81 0.96

SVM 0.90 0.89 0.89 0.97

LR 0.92 0.91 0.91 0.98

(e) Column type prediction on Tablepedia

Fig. 3. Table interpretation with Näıve Bayes (NB), Support Vector Machine (SVM),
Logistic Regression (LR). MV is Majority Voting, AUC is area under the curve

high performance. Näıve Bayes (NB) outperformed the others, especially in terms
of F1 and AUC. Thus, we decided to select this as the default one for this task.

In Figure 3d, we report the classifiers’ performance for the column types on
our gold standard, while Figure 3e reports the same for Tablepedia. In both
cases, we see that LR performs best, likely due to the combined importance
of textual and numeric features for this task. Additionally, we observe that our
model significantly outperforms the model of [31] on their dataset. If we compare
the scores between the two datasets, then we see that they are significantly lower
with our dataset. The reason is two-fold: First, the authors of Tablepedia have
manually removed much noise from the extracted tables while no pre-processing
took place on our dataset. Second, our dataset contains many more classes than
Tablepedia, which makes it more challenging to predict.

Finally, we studied the added value of using Snorkel and compared it with
a simpler majority voting (MV), i.e., labeling a data point using the most fre-
quently predicted class. In Figure 3c, we report both the accuracy obtained
with majority voting and with Snorkel with various types of predictions. While
Snorkel outperforms MV for the table type detection and column type detec-
tion in Tablepedia, MV is better when detecting the column types of our cor-
pus. This was expected because, in this last case, our labeling functions (i.e.,
SPARQL queries) have frequently abstained. Consequently, M has a low label
density [24], and whenever this occurs, Snorkel is unable to compute optimal
weights that diverge from MV [24].

6.2 Entity Linking

Figure 4a reports the number of entities before and after the execution of the
EGD rules. The left side compares the number of entities that refer to columns
before and after r3 was executed. As we can see, r3 merged many entities, and
this reduced the number of distinct entities of 65%. The right side shows the

▸ Gold standard: 400 sampled tables, manual annotation

▸ 4 table types, 39 label queries

▸ Features from table caption, header cells and body cells

11

TAB2KNOW: BUILDING A KNOWLEDGE BASE FROM TABLES IN SCIENTIFIC PAPERS

RESULTS: COLUMN TYPESTab2Know: Building a Knowledge Base from Tables in Scientific Papers 13

Method Acc.

1
st

Row 0.71

Ours 0.76

(a) Header detec-
tion

Model Prec. Recall F1 AUC

SVM 0.71 0.79 0.74 0.86

LR 0.72 0.79 0.74 0.84

NB 0.80 0.82 0.79 0.91

(b) Table type prediction on our corpus

Task MV Snorkel

Table Types 0.50 0.71
Column Types

0.56 0.49
(Our corpus)

Column Types
0.39 0.65

(Tablepedia)

(c) MV vs. Snorkel

Model Prec. Recall F1 AUC

NB 0.52 0.48 0.47 0.87

SVM 0.58 0.56 0.53 0.83

LR 0.58 0.56 0.53 0.85

(d) Column type prediction on our cor-
pus

Model Prec. Recall F1 AUC

Yu et al. [31] 0.82 0.81 0.81 0.90

NB 0.84 0.82 0.81 0.96

SVM 0.90 0.89 0.89 0.97

LR 0.92 0.91 0.91 0.98

(e) Column type prediction on Tablepedia

Fig. 3. Table interpretation with Näıve Bayes (NB), Support Vector Machine (SVM),
Logistic Regression (LR). MV is Majority Voting, AUC is area under the curve

high performance. Näıve Bayes (NB) outperformed the others, especially in terms
of F1 and AUC. Thus, we decided to select this as the default one for this task.

In Figure 3d, we report the classifiers’ performance for the column types on
our gold standard, while Figure 3e reports the same for Tablepedia. In both
cases, we see that LR performs best, likely due to the combined importance
of textual and numeric features for this task. Additionally, we observe that our
model significantly outperforms the model of [31] on their dataset. If we compare
the scores between the two datasets, then we see that they are significantly lower
with our dataset. The reason is two-fold: First, the authors of Tablepedia have
manually removed much noise from the extracted tables while no pre-processing
took place on our dataset. Second, our dataset contains many more classes than
Tablepedia, which makes it more challenging to predict.

Finally, we studied the added value of using Snorkel and compared it with
a simpler majority voting (MV), i.e., labeling a data point using the most fre-
quently predicted class. In Figure 3c, we report both the accuracy obtained
with majority voting and with Snorkel with various types of predictions. While
Snorkel outperforms MV for the table type detection and column type detec-
tion in Tablepedia, MV is better when detecting the column types of our cor-
pus. This was expected because, in this last case, our labeling functions (i.e.,
SPARQL queries) have frequently abstained. Consequently, M has a low label
density [24], and whenever this occurs, Snorkel is unable to compute optimal
weights that diverge from MV [24].

6.2 Entity Linking

Figure 4a reports the number of entities before and after the execution of the
EGD rules. The left side compares the number of entities that refer to columns
before and after r3 was executed. As we can see, r3 merged many entities, and
this reduced the number of distinct entities of 65%. The right side shows the

Tab2Know: Building a Knowledge Base from Tables in Scientific Papers 13

Method Acc.

1
st

Row 0.71

Ours 0.76

(a) Header detec-
tion

Model Prec. Recall F1 AUC

SVM 0.71 0.79 0.74 0.86

LR 0.72 0.79 0.74 0.84

NB 0.80 0.82 0.79 0.91

(b) Table type prediction on our corpus

Task MV Snorkel

Table Types 0.50 0.71
Column Types

0.56 0.49
(Our corpus)

Column Types
0.39 0.65

(Tablepedia)

(c) MV vs. Snorkel

Model Prec. Recall F1 AUC

NB 0.52 0.48 0.47 0.87

SVM 0.58 0.56 0.53 0.83

LR 0.58 0.56 0.53 0.85

(d) Column type prediction on our cor-
pus

Model Prec. Recall F1 AUC

Yu et al. [31] 0.82 0.81 0.81 0.90

NB 0.84 0.82 0.81 0.96

SVM 0.90 0.89 0.89 0.97

LR 0.92 0.91 0.91 0.98

(e) Column type prediction on Tablepedia

Fig. 3. Table interpretation with Näıve Bayes (NB), Support Vector Machine (SVM),
Logistic Regression (LR). MV is Majority Voting, AUC is area under the curve

high performance. Näıve Bayes (NB) outperformed the others, especially in terms
of F1 and AUC. Thus, we decided to select this as the default one for this task.

In Figure 3d, we report the classifiers’ performance for the column types on
our gold standard, while Figure 3e reports the same for Tablepedia. In both
cases, we see that LR performs best, likely due to the combined importance
of textual and numeric features for this task. Additionally, we observe that our
model significantly outperforms the model of [31] on their dataset. If we compare
the scores between the two datasets, then we see that they are significantly lower
with our dataset. The reason is two-fold: First, the authors of Tablepedia have
manually removed much noise from the extracted tables while no pre-processing
took place on our dataset. Second, our dataset contains many more classes than
Tablepedia, which makes it more challenging to predict.

Finally, we studied the added value of using Snorkel and compared it with
a simpler majority voting (MV), i.e., labeling a data point using the most fre-
quently predicted class. In Figure 3c, we report both the accuracy obtained
with majority voting and with Snorkel with various types of predictions. While
Snorkel outperforms MV for the table type detection and column type detec-
tion in Tablepedia, MV is better when detecting the column types of our cor-
pus. This was expected because, in this last case, our labeling functions (i.e.,
SPARQL queries) have frequently abstained. Consequently, M has a low label
density [24], and whenever this occurs, Snorkel is unable to compute optimal
weights that diverge from MV [24].

6.2 Entity Linking

Figure 4a reports the number of entities before and after the execution of the
EGD rules. The left side compares the number of entities that refer to columns
before and after r3 was executed. As we can see, r3 merged many entities, and
this reduced the number of distinct entities of 65%. The right side shows the

Tab2Know: Building a Knowledge Base from Tables in Scientific Papers 13

Method Acc.

1
st

Row 0.71

Ours 0.76

(a) Header detec-
tion

Model Prec. Recall F1 AUC

SVM 0.71 0.79 0.74 0.86

LR 0.72 0.79 0.74 0.84

NB 0.80 0.82 0.79 0.91

(b) Table type prediction on our corpus

Task MV Snorkel

Table Types 0.50 0.71
Column Types

0.56 0.49
(Our corpus)

Column Types
0.39 0.65

(Tablepedia)

(c) MV vs. Snorkel

Model Prec. Recall F1 AUC

NB 0.52 0.48 0.47 0.87

SVM 0.58 0.56 0.53 0.83

LR 0.58 0.56 0.53 0.85

(d) Column type prediction on our cor-
pus

Model Prec. Recall F1 AUC

Yu et al. [31] 0.82 0.81 0.81 0.90

NB 0.84 0.82 0.81 0.96

SVM 0.90 0.89 0.89 0.97

LR 0.92 0.91 0.91 0.98

(e) Column type prediction on Tablepedia

Fig. 3. Table interpretation with Näıve Bayes (NB), Support Vector Machine (SVM),
Logistic Regression (LR). MV is Majority Voting, AUC is area under the curve

high performance. Näıve Bayes (NB) outperformed the others, especially in terms
of F1 and AUC. Thus, we decided to select this as the default one for this task.

In Figure 3d, we report the classifiers’ performance for the column types on
our gold standard, while Figure 3e reports the same for Tablepedia. In both
cases, we see that LR performs best, likely due to the combined importance
of textual and numeric features for this task. Additionally, we observe that our
model significantly outperforms the model of [31] on their dataset. If we compare
the scores between the two datasets, then we see that they are significantly lower
with our dataset. The reason is two-fold: First, the authors of Tablepedia have
manually removed much noise from the extracted tables while no pre-processing
took place on our dataset. Second, our dataset contains many more classes than
Tablepedia, which makes it more challenging to predict.

Finally, we studied the added value of using Snorkel and compared it with
a simpler majority voting (MV), i.e., labeling a data point using the most fre-
quently predicted class. In Figure 3c, we report both the accuracy obtained
with majority voting and with Snorkel with various types of predictions. While
Snorkel outperforms MV for the table type detection and column type detec-
tion in Tablepedia, MV is better when detecting the column types of our cor-
pus. This was expected because, in this last case, our labeling functions (i.e.,
SPARQL queries) have frequently abstained. Consequently, M has a low label
density [24], and whenever this occurs, Snorkel is unable to compute optimal
weights that diverge from MV [24].

6.2 Entity Linking

Figure 4a reports the number of entities before and after the execution of the
EGD rules. The left side compares the number of entities that refer to columns
before and after r3 was executed. As we can see, r3 merged many entities, and
this reduced the number of distinct entities of 65%. The right side shows the

ML model performance
on Tablepedia data

ML model performance
on Tab2Know data

Accuracy of label aggregation

▸ 22 column types

▸ 55 label queries

12

TAB2KNOW: BUILDING A KNOWLEDGE BASE FROM TABLES IN SCIENTIFIC PAPERS

RESULTS: ENTITY RESOLUTION

Number of entities per rule

▸ 3 entity creation rules + 4 entity merging rules

▸ 65% entities are sensible, 97% mergers are good

127486

43788

No link. r3

689459

560119 531157 498242 488910

311999

No link. r4 r5 r6 r7 All

14 Anonymous

127486

43788

No link. r3

689459

560119 531157 498242 488910

311999

No link. r4 r5 r6 r7 All

(a) Ablation study. The bar marked with ri reports the num-
ber of entities when only EGD ri is included in the rule set

G
o
o
d

3

Label # Links
mnist 288

knn 211

wiki 146

cifar-10 108

en-es 65

B
a
d

7

after 183

analysis 66

subset 49

0/0/0 9

f4(x) 6

(b) Examples

Fig. 4. Analysis of the performance of entity linking

decrease of entities that refer to cells after the execution of rules r4, . . . , r7. Here,
the bar titled ri reports the number of entities if only ri is executed while the
right-most column indicates the number of entities when all rules are included.
We observe that every EGD contributes to merge some entities, but the best
results are obtained when all EGDs are activated: here, the EGDs merged about
55% of the entities.

To evaluate the quality of entity links, we manually evaluated a sample of
100 merged entities. For each sampled entity, we first determined whether the
entity was a meaningful one. From this analysis, we discovered that 65% of the
entities are correct while the remaining have either nonsensical labels or some
text resulted from errors of Tabula. In Figure 4b, we report examples of good
and bad entities with their number of links.

Then, we looked at the cells which referred to the entity, which were 541 in
total. Since the rules could make a mistake and link two cells to the same entity
although they meant di↵erent ones, we evaluated, for each entity, the precision
of its links. Given the set of n cells that link to the same entity, the precision
is computed by taking the cardinality of the largest subset of cells that refer to
the same concept and divide it by n. For instance, consider an entity X with
label Y which is linked to n = 4 cells.Three of these cells contain the text Y

but refer to a dataset while one cell contains Y but refers to something else. In
this case, the precision for X is 3

4
. In our sample, the average precision over the

meaningful entities was about 97%, which is a relatively high value that shows
that reasoning produced an accurate entity linking.

7 Conclusion

Summary. We presented Tab2Know, an end-to-end system for building a KB
from the knowledge in scientific tables. One distinctive feature of Tab2Know is
the usage of SPARQL queries for weak supervision to counter the lack of training

Examples
13

TAB2KNOW: BUILDING A KNOWLEDGE BASE FROM TABLES IN SCIENTIFIC PAPERS

RESULTS: KNOWLEDGE GRAPH

▸ 143k PDFs from Semantic Scholar

▸ 73k tables extracted

▸ 23M links in graph

▸ Demo

14

