In-Vitro Serverless Clusters

Hongyu He
honghe @inf.ethz.ch
ETH Zurich

Abstract

Serverless has been fast advancing in many fronts such as
cold starts, virtualization, scheduling, workflow manage-
ment, etc. Many open-source serverless systems have been
built, and various benchmark suites have been developed.
However, the development of serverless features is not
going hand-in-hand with the experimental methodology.
While being comprehensive and heterogeneous, existing
frameworks and benchmarks can hardly address funda-
mental methodological problems.

With Azure function workloads, we show that experi-
mental methodology is indispensable by identifying prob-
lems in existing approach that can lead to substantial distri-
bution shifts in workload models, large variation in perfor-
mance measurements, and 100X througput overestimation.
To counter this challenge, we propose a methodology for
end-to-end serverless experiments, including workload
modeling, cluster configuration, implementation of bench-
mark function, and load generation. Further, we build an
off-the-shelf, open-source platform with our methodol-
ogy integrated, enabling in-vitro experiments with clus-
ters of arbitrarily smaller sizes. We expect our method-
ology and platform to facilitate easier, more reliable and
reproducible serverless experiments.

1 Introduction

Serverless computing is an increasingly popular execution
model in the cloud that offers high elasticity and fine-grain
billing while freeing users from the burden of resource
management. Serverless cloud offerings have not only at-
tracted a high volume of users running real-world applica-
tions; they have also stimulated systems research efforts
in academia and industry. For example, researchers have
optimized serverless sandbox initialization latency [7, 8,
16,43], scheduling algorithms [40, 48], memory dedupli-
cation [46], and data communication [7, 15,28, 35].
However, conducting system research on serverless in-
frastructure “in-vitro’—in a research lab setting with-
out access to the internal system implementation of real
serverless infrastructure from major cloud providers—is
challenging as it requires a state-of-the-art open-source
platform and a representative set of workloads. Recog-
nizing this need, numerous open-source platforms (e.g.,
[1,2,32,50]), benchmark suites (e.g., [12,27,36]), and
real workload traces (e.g., [33,47]) have been released in
recent years by academia and industry. While being in-

strumental, none of them addresses fundamental but cru-
cial methodological issues of “in-vitro” serverless infras-
tructure experiments. In this paper, we bring to light and
propose solutions to the following methodology issues in
serverless experiments at cluster scale in a lab setting.
Workload modeling. In-vitro serverless experiments
require modeling real workloads using only a (small) sub-
set of production traces while preserving job distributions
(invocation frequency, execution time, memory footprint,
etc.) [30, 34,42, 51]. This need springs from two facts:
(1) the infrastructure available to a typical lab setting can
be relatively miniature (e.g., tens or hundreds of nodes)
compared to a production environment (millions of nodes
[49,52]), and (2) the development and evaluation of sys-
tem policies are preferably conducted with a small frac-
tion (e.g., 0.9% [30]) of the machines used in production.
However, constructing a sound workload model is par-
ticularly challenging in serverless where function work-
loads feature skewed distributions that are hard to approx-
imate [24,47,48,54]. Consequently, the workload models
employed in prior work suffer from substantial distribu-
tion shifts (§2.1), which could have a negative impact on
the results and conclusion since the job distributions used
for development and evaluation are unlikely to occur in
production.

Cluster setup & configuration. Having a representa-
tive configuration and stable setup is critical in systems
experiments [26, 55], without which, the results could be
statistically unsound and implicitly irreproducible. While
incorporating many state-of-the-art features, none of ex-
isting serverless platforms can readily host real workloads
without onerous manual setup and configuration. More-
over, they do not have integrated tools (e.g., load genera-
tion, monitoring/tracing) that assist with in-vitro server-
less experiments. Such lack of automation and tooling
hampers reproducibility and analysis. We demonstrate
that cluster misconfiguration can lead to 100X through-
put overestimation (§3).

To address the above challenges, we present a princi-
pled methodology for end-to-end in-vitro serverless exper-
iments. Specifically, we make the following contributions:

e Serverless experiment methodology: We develop

and validate the first serverless experiment methodol-
ogy, including workload modeling from production
function trace (§2.2), cluster configuration (§3.1),
system warm-up (§3.2), and benchmark function im-
plementation (§3.3), enabling in-vitro experiments
with clusters of arbitrarily smaller sizes.

o End-to-end experiment platform: We build and
validate an out-of-box serverless platform integrated
with our methodology and experiment tools for in
vitro serverless research (§4). Our work is open-
source.

2 Workload Modeling

The goal of workload modelling is to create a production-
like environment for realistic performance testing. Traces
collected in production clusters capture the characteris-
tics of real workloads, however they are often too large
to replay in their entirety for most experiments, due to
their cluster resource requirements [33, 47, 49, 52] and
duration [20,21,47]. We use the trace from Azure Func-
tions [47] as a running example. It contains 73K unique
functions and spans two weeks of deployment time.
The need for sampling. For practical “in-vitro” experi-
ments that can execute in smaller clusters and in less time,
researchers need to sample large-scale traces. However, to
ensure that meaningful insights can still be gleaned from
down-scaled configurations, the sampling methodology
must preserve salient characteristics of the full workload.
Workload sampling is particularly challenging and crit-
ical in the context of serverless computing, as workloads
exhibit skewed distributions [24, 47, 48, 54]. For exam-
ple, functions are typically short-lived (less than 1 sec-
ond), however the execution time can vary widely across
functions and individual invocations of the same function.
Some functions are also invoked much more frequently
than others (e.g., 1% of functions can account for over 80%
of invocations [47]).
Representativeness. Serverless workloads can be
mainly characterized in three dimensions: execution time,
memory footprint, and load variation. Taking these as
defining characteristics of serverless workloads, we call
a sampled trace representative of an original large-scale
trace if its distribution is statistically similar to the orig-
inal trace’s distribution across all three dimensions: (1)
function execution time, (2) function memory footprint,
and (3) function invocation frequency.

2.1 Problems in Existing Workload Models

Distribution Shift. Many prior works have sampled the
Azure trace to evaluate state-of-the-art features in server-
less systems. As shown in Figure 1, their workload models
diverge from the original trace to various degrees.
FaasCache [18] and Medes [46] randomly pick unique
functions from the original trace (Random) [18]. Addi-
tionally, Medes also scales all function invocation rates by
5% [46] (Random+Scaling). Hermod [24] intention-
ally models the load skewness by choosing one function

CDF

50 Functions

— Azure Trace

— In Vitro (Ours)

--- Random (FaasCache)
Random+Scaling (Medes)

... Load-Based (Hermod)
Event-Based (Atoll*)

0.0

10' 10° 10° 10’
Daily Invocations per Function (log scale)

Figure 1: Distribution comparison of daily invocations per func-
tion of workload models from prior works (FaasCache [18],
Medes [46], Atoll [48], and Hermod [24]) with our workload
model (§2.2). For fairness, all workload models are scaled to
50 functions (see §2.1). *Atoll scales the invocations based on
their testbed but does not specify the scales, so we do not do
such scaling here.

50 Functions

0.8

0.6

0.4 — Trace Median — Trace Median

—.- Trace Min —.- Trace Min
- Trace Max - Trace Max
0.2 — In Vitro Median — — Random Median
F —- In Vitro Min —-- Random Min
--- In Vitro Max --- Random Max
0.0 =y 3 s 7 3 s 7
10 10 10 10 10 10 10

Function Duration (log scale) [ms] Function Duration (log scale) [ms]
Figure 2: Distribution validation of function durations between
workload samples from our method and random selection against
the original Azure trace. Both samples contain 50 functions.
Our method approximates well the zail distributions of the 78K
functions of original trace with only 50 functions.

that accounts for 90% of the total load and having 49 func-
tions that equally contribute to the remaining 10% [24]
(Load-Based). However, since it does not specify how
large the 90%-load is, we randomly select a function that
has the average number of invocations (18,595) in the
original trace as that 90%-load function. Atoll’s workload
model takes the most popular functions of every event
type [48] (Event-Based). FaasCache originally uses
200 random functions, and Medes uses 10. Hermod se-
lects 50 functions based on load, and Atoll does not spec-
ify the number. For fairness, we unify the number of func-
tions to 50 as a middle ground for all workload models.

Intractable Load. Existing workload modeling meth-
ods also do not provide a way to easily control or mono-
tonically scale the load in a trace. The ability to gradually
and monotonically increase load on a serverless system
is useful to find the “elbow” point, at which the system
resources are saturated and queuing latency starts to man-
ifest. The location of such an elbow point is an important

e % N A U AW N =

T <
BN =2

Algorithm 1 Sampling individual trace.

Input: N € Z, number of functions in resulting sample
Input: T, original trace of dimension D
Input: @, set of statistical tests
Output: 7', sample trace with N functions
Parameters: 7, significance thresholds for each ®
v« false
while !v do
f « Draw N functions uniformly at random from T’
foreach d € D do
7 « Select N records of d from T for f
U« true
forp € @, 7, € 7 do
if p(7, T'D) < 7, then
| v« false;break

if v then

‘ T'@D 7
else

| T’ < []; break
return 7’

performance indicator when evaluating resource alloca-
tion and scheduling policies [11,13,17,23,38,44]. How-
ever, with random sampling, the load in each sample trace
is uncontrolled by the sampling process, which makes it
infeasible for load-testing. For example, a sample trace of
300 functions resulting from Random Selection can have
6x smaller load than a sample trace containing 40 less
functions (Figure 3 left).

2.2 In Vitro Trace Sampling and Scaling

Assumptions. We use the Azure Functions trace in our
work and make the following assumptions, due to limita-
tions of the trace: (1) we discard any incomplete or incon-
sistent records and treat duplicated functions as different
functions !, (2) we assume exponential inter-arrival times
since the traces does not contain invocation timestamps,
and (3) we assume functions are independent 2,

Sampling algorithm. We propose a simple sampling
algorithm aided by statistical tests (Alg. 1). The algorithm
first draws functions (f) uniformly at random, then for
each function, it indexes into the original trace to obtain
various dimensions (e.g., memory, invocations) one by
one. During this process, it conducts a set of statistical
tests before moving on to the next dimension, checking
if the significance of the similarity between the sampled
dimension (7) and that of the original workload is above
the threshold (Line 8). Specifically, we employ two statis-
tical tests, Kolmogorov-Smirnov two-sample test [37] and

Lgithub.com/Azure/AzurePublicDataset/issues/23
2github.com/Azure/AzurePublicDataset/issues/16

Total Multiplicative Load [Million]

Roll-Up Scaling

Uniform Random
2 3
346 315 376 378 382 304 396 401 220 d27 236

850
525
396 420
142 133 147
2, o . B 1 6 S
==L e

100 120 140 160 180 200 220 240 260 280 300 100 120 140 160 180 200 220 240 260 280 300
Number of Functions in Sample Trace

Figure 3: Comparison of the multiplicative load of sample traces
with increasing numbers of functions resulting from Random
Selection and our Roll-Up Sampling method. The multiplicative
load is defined as the multiplication of function duration in ms
and memory footprint in MiB.

Anderson-Darling k-sample test [9]. The algorithm will
retry from the start unless all dimensions pass both statis-
tical tests 3 (empirically, this procedure is guaranteed to
terminate when sample size >10 functions). As a result,
using only 50 functions, our sampling method approxi-
mates the (tail) distributions well across all dimensions
of the original trace (Fig. 1 & 2 left).

Although random selection has the closest performance
to our approach, it does not guarantee sound approxi-
mation across all dimensions of the original trace, such
as function execution time (Fig. 2 right). Such distribu-
tion shifts make these workload models unlikely to be
seen in production, which can negatively impact the ap-
plicability of resulting serverless policies. Furthermore,
since the statistical similarity is guaranteed by statisti-
cal tests, trace samples from independent draws contain
similar load and characteristics (as they all approximate
the original distributions). As a result, the performance
measurements of independent trace samples from our sam-
pling approach would yield much less variation compared
to straightforward random selection, providing more rep-
resentative results and better convergence behaviors (Fig.
4) [26,30,55]. For example Fig. 4 shows the variation of
system performance over 100 runs on 100 independent
sample traces from resulting from Random Selection and
our Roll-Up Sampling method. The performance measure-
ments from our sample traces yield 15.5x lower standard
deviation, compared to random selection.

Roll-up scaling. While drawing larger samples (N 1)
naturally improves the fidelity of sampled job distribu-
tions [30] (Fig. 7b red line) due to Law of Large Numbers,
it does not provide any control over the load of resulting
samples (Fig. 3 left). One way of controlling the load is by
using the number of functions N as a proxy, i.e., a larger

3The Azure trace contains three dimensions (function invocations,
execution times, and memory allocations), and here we only compare
the invocation distribution because many prior works employ the other
two dimensions from other traces/benchmarks.

https://github.com/Azure/AzurePublicDataset/issues/23
https://github.com/Azure/AzurePublicDataset/issues/16

i !
! 1
0.8 H :
1
! i
td = 4x
. 061 : " !
A :
© o4 i
| std = 62x I|'
0.2 — In Vitro Sampling
— Uniform Random
0.0
10° 10' 10° 10°

Slowdown (log scale) [x]

Figure 4: Standard deviation (St d) of slowdown resulting from
100 runs on 100 independent trace samples from our sampling
method (Ours) and that of the random selection (Uniform
Random). Slowdown is defined as the response time over the
specified duration from the Azure trace.

sample trace that contains more functions is expected to
bear higher load than a smaller one having less functions.
There are two options to do so, (1) drilling down: drawing
smaller sub-samples from a large sample trace, and (2)
rolling up: combining small trace samples to form larger
ones that contain more functions. Drilling down is infea-
sible since sampling errors cascade from larger samples
to smaller ones, making them invalid. In contrast, rolling
up is an analogy of bootstrapping process [41], where the
sample fidelity does not degrade with the sample size,
because the smallest trace samples (Unit Sample) at
the bottom layer are independently drawn from the origi-
nal trace (Fig. 7a). As a result, we use roll-up scaling to
obtaining series of trace samples where the load grows
monotonically with the number of functions (Fig. 3 right).
Moreover, with this scaling method, the statistical simi-
larity converges stably whereas that of Uniform Random
fluctuates greatly (Fig. 7b). Roll-up scaling offers a way
to control the load through the number of functions a sam-
ple trace contains, enabling load-testing on real workloads
(Fig. 8).

3 In Vitro Serverless Clusters

Having a valid workload model does not guarantee ob-
taining desired measurements without appropriate cluster
configuration (§3.1), warm-up procedure (§3.2), and func-
tion implementation (§3.3).

3.1 Cluster Configuration

Systems experiments often require multiple runs and fre-
quent restarts to reset system states for obtaining stable
and consistent results [26,55]. However, correctly setting
up and configuring serverless clusters is a non-trivial task.

Existing open-source serverless platforms require onerous
manual setup and tuning to execute representative work-
load traces. This complexity impedes results reproduction
since the cluster boosting procedure is prune to misconfig-
urations and may vary by practitioner. Therefore, fully au-
tomated cluster setup is required to mitigate such pitfalls.
Furthermore, required resources (CPU, memory) from the
trace should be reserved for every deployed function as
what is done in most public clouds [3,4]. Guaranteed re-
sources are reserved exclusively for respective jobs even
if they are not fully utilized [14, 26, 31, 49]. Without re-
serving resources for each function (e.g., CPU and mem-
ory quotas), system performance can have much larger
variation due to more dynamics in sharing of resources
between functions that should have been designated to
the corresponding tenants. Similarly, it can also result in
overestimation of the maximum load the system can sus-
tain because of unrealistically high resource utilization.
To provide such resource guarantees, during deployment
serverless systems should map the maximum memory re-
quirement of each function to its CPU quota based on
common standards from public clouds (e.g., [3]) By doing
so, cluster scheduler can be informed to reserve these re-
sources exclusively for corresponding function instances,
providing the same resource guarantees for each function
as that of the public clouds.

3.2 Two-Phase Warm-up

Before the start of experiments, a warm-up procedure
needs to be carried out. For performance measurements
to be representative, the underlying system should be in a
steady, long-running state [25,29] as if it has been running
the workload in a production environment for a sufficient
period of time.

Specifically, if the experiment starts at time ¢, each func-
tion should have approximately a certain number of in-
stances as if the system has been running since (t — w),
where w is the eviction window of the system. In other
words, any decisions made by the control plane before
(t—w) should either have taken effect or have disappeared
due to eviction by time ¢. To achieve this, the warm-up
procedure should have at least two phases. In Phase 1, it
profiles the first w minutes of the trace to obtain an esti-
mation of the expected concurrency L for each function.
Next, using the profiled concurrences, it can employ Lit-

) _ A/60
tle’s Law (EL = 1000/7

T is the mean execution time in ms of a function, and 60
and 1000 are for transforming the time unit in the trace
from minute and ms to second respectively) to compute
the number of warm-up instances for each function. In
Phase 2, the procedure should directly bring up the num-
bers of instances estimated in Phase 1 for every function.
Then, it starts invoking functions for the next > w min-

where A is the total invocations,

System Booster e 1

¢ Setup configs

vHive Cluster

< Reset cluster states

q . creates
¢ Capacity extenswnJ

> <—|@ @l ,’I i

triggers © depl ’
. ° ploys
— invokes | 7 functions !/ Phase 1: Profiling
Individual @ | I’
Haes Sample Traces OpgreLissry o Load ! \l/
Controller Generator
User 1 I sample y (tens/hundreds of ’ Phase 2: Warm-Up
Trace Sampler functions) A
controls Runtime Two-Phase @ \l/ No
Roll Up Generator Warm-Up
\ Is in steady state?
\
\
\ Yes \l/
Metric ‘\
~ Collection ¥ Start real measurements
Measurements @

Figure 5: Overview of the end-to-end platform for in-vitro serverless experiments.

=
=)
S

i
= !
= = —_
=) T Context Switch
w3 H-=
& i 5
oy i 7 0 ?!f:zi**Vu Mem
] - g 3
52 ‘Hardware Limit i = Timer+Phy. Mem
3 Software Limit|| 5 40 — Cycle+Phy. Mem
i
g 1 ; OD« 20
2 i
2 | ©
%) i
0 H H 0
0 50 100 150 200 0 50 100 150 200
RPS RPS

Figure 6: Validation of our function implementation by invok-
ing one function with 1s of duration and 170 MiB of mem-
ory footprint (both are p50 of Azure trace) on one node, grad-
ually increasing requests per second (RPS). Sleep: Idle wait.
Timer+Vir/Phy.Mem: Timer-based timing and virtual/phys-
ical memory allocation. Cycle+Phy .Mem: Cycle-based tim-
ing and physical memory allocation.

utes, letting the cluster scale function instances naturally.
Once the system has reached a steady state [25], the actual
experiments and measurements can then begin.

3.3 Function Implementation

Resource utilization is the bottom line of cloud providers
and a key performance metric of serverless policies. Given
a workload with valid job distributions and system con-
figurations, the actual amount of load imposed on the sys-
tem relies on the runtime implementation of the function
server; therein lies the question: How to implement the
functions such that the runtime specifications are reliably
Sulfilled?

Idle waiting (e.g., s1leep) and busy spinning stopping
on timer-events are two commonly used ways to fulfil
function durations from the trace 4. However, we show

4Here, we are talking about loaded functions not unloaded functions
implemented with noop that return immediately upon any requests

that these methods may yield misleading. To demonstrate
this implication, we invoke one function with 1s of dura-
tion and 170 MiB of memory footprint (both are pS0 of
Azure trace) on one node, gradually increasing requests
per second results (Fig. 6). Since the node has 16 phys-
ical cores with both turboboost and hyperthreading dis-
abled, the max. theoretical throughput is ~16 RPS (Hard-
ware Limit), i.e., the system can serve ~16 concurrent re-
quests. We also impose the same software limit as Azure
does [39]: max. 200 instances/function (Software Limit).
The max. throughput of our implementation (cycle-based
timing + physical memory allocation) is limited by the
number of cores, but throughput of the idle implementa-
tion (Sleep) is only capped by the instance limit. The
timer-based implementations with physical/virtual mem-
ory allocation saturate the CPU at the same point as ours
but end up measuring the efficiency of context switching
afterwards (since the time spent context switching is also
part of the timing), instead of the serverless policies un-
der evaluation. Consequently, wrong implementation can
lead to 100X throughput overestimation and 5X underes-
timation of resource utilization.

Firstly, letting a function idle wait barely imposes any
load on the underlying serverless system as the job is put
on runqueue and woken up by interrupts. For timer-based
implications, function executions are amenable to kernel
traps (e.g., context switches, I/0O blocking). For example,
under high CPU utilization (e.g., N + 1 kernel threads
running on an N -core machine), a Is-duration function
instance can spend 300ms on context switching and only
700ms on execution. In other words, although the function
was stopped by the timer after exactly 1s, it only imposed
700ms-load on the system (rather than the intended 1s of
load).

Therefore, timer-based implementation can give mis-

o
S

— Uniform Random

Sample of
K xM Functions

N -
— Roll-Up Scal
% 0 oll-Up Scaling
z
Sample of 2K| - |Sample of 2K e 30
Functions Functions B
% 20
2
Unit Sample of|[Unit Sample of| | [Unit Sample of § 10
K Functions K Functions K Functions
~ 0 250 500 750 1000
M Number of Functions in Sample Trace
(a) (b)

Figure 7: (a) Roll-up scaling method. (b) Divergence of memory
distribution of trace samples from the original Azure workload
measured by Wasserstein distance. The divergence of the roll-
up samples converges steadily as the number of functions in
the sample trace increases, while that of the random samples
fluctuates greatly.

%3
(=]

N
(=]
>\’

X
£ 30
3 ! /.\/ !
E 20 I v
g /
10 \ e V -~ Roll-Up
- —- Unif. Rand
0
50 100 150 200

of Functions in Workload

Figure 8: System performance with sample traces on a three-
node cluster (one master, two workers). Roll-up scaling offers a
way to control the amount of load in trace samples in the work-
load modelling process (§2.2). Specifically, it makes the load
increase monotonically with the number of functions in sample
traces, enabling load testing with real workloads. In contrast,
since the load in random selection is intractable (§2.1), system
performance fluctuates greatly in an uncontrolled manner.

leading results and even lead to evaluating the wrong tar-
get (e.g., the capability of context switching), which makes
policy evaluation and comparison hard (Fig. 6). Moreover,
it also bears high randomness (e.g., a 1s-duration function
can impose varying amounts of load in the different runs)
and, in turn, implies irreproducibility.

Similarly, replaying function memory footprints re-
quires physical memory allocation. For example, invoking
a system call (e.g., mmap) to replay a function’s memory
footprint from the trace without touching any allocated
pages is problematic on Linux, because the allocated mem-
ory pages remain virtual if not used, imposing less stress
on the underlying system than intended.

4 End-to-End Experiment Platform

To realize our methodology and to make serverless exper-
iments easier and more reproducible, we build an end-
to-end (E2E) platform atop one of the state-of-the-art
serverless framework, vHive [50]. We choose vHive for
its generality, ease of integration of various sandboxes
(e.g., gVisor [53], Firecracker [7]), and other advanced
features. It offers a convenient interface to the serverless
infrastructure but does not provide tools to assist our end-
to-end methodology such as workload modeling, load-
testing. Thus, apart from a tuned vHive framework, we
build three main components for our experiment platform:
Trace Sampler (@), System Booster (@), and Load Gen-
erator (@) .

Obtaining sample traces. Trace Sampler implements
our sampling and scaling methods described in §2.2 with
<1K LoC. Its generality makes it easy to be adapted to
other traces of different data models. Users can run Trace
Sampler by with simple commands to obtain a set of sam-
ple traces (@), where every sample trace is a statistically
sound approximation of the entire Azure workload (Fig. 1
& 2 left), and the load increases gradually with the number
of functions (Fig. 3 right).

Automated setup & configuration. With a single com-
mand, users can use System Booster to create an in vitro
cluster of arbitrary sizes where related parameters (e.g.,
networking, resource quotas) are automatically configured
for hosting heavy workloads , making our open-source
platform the first to support 500+ function instances per
node, on par with leading public clouds. In turn, System
Booster makes conducting, repeating, and reproducing ex-
periments much easier and more efficient, mitigating com-
plexity and pitfalls described in §3.1.

Open-loop load generation. Load Generator is the
spinal cord of our end-to-end platform and embodies the
bulk of our methodology. It employs an open-loop con-
troller, which is more intricate but also more useful than
close-loop controller in evaluating system stability and la-
tency [29,55]. Given statistics provided by the Azure trace,
it generates function execution times and memory foot-
prints using Smirnov Transform [19]. Specifically, Load
Generator treats a function runtime (e.g., CPU, memory)
as a random variable, say Y with a cumulative density
distribution (CDF) Fy. Then, Load Generator approxi-
mates the CDF simply through probability integral trans-
form: it first generates random variable U ~ U°(0, 1)
and draws the runtime by Fy’ Yw) = yfor PO < Y <
y) = P(0 < U < u). As for generating inter-arrival times
(IATs), since this information is missing from the pub-
lished Azure trace, Load Generator provides users with
several common IAT distributions, e.g., Exponential, Uni-
form, periodic.

3Code will be available upon publication.

Load Generator replays function traces systematically,

generating load against vHive. Before starting any mea-
surements, it executes a two-phase warm-up process (§3.1,
(). The eviction period (w) in vHive is 5 minutes, which
is used as the profiling duration. In Phase 2, Load Genera-
tor generates warm-up invocations for the next 10 minutes
(2w). To guard against insufficient warm-up, we take in-
spiration from Lancet [29] and adopt augmented Dickey-
Fuller tests (ADF) for testing the stationarity of the latency
measurements ((3). If the system has not yet reached in
a steady state [25] after 10 minutes, users will receive a
warning to increase this duration. However, unlike Lancet
that checks the stationarity of E2E response time, we use
pure system latency, (E2E response time with execution
times subtracted) as the stationary measure (see Appendix
A.1 for detailed explanation and proof).
Cycle-based timing & physical memory allocation.
To address the pitfalls discussed in 3.3, we need to cir-
cumvent timer-based implementation, directly gauging
the amount of work, instead of the time of existence, for
each function. To achieve this objective, we resort to
cycle-based timing (®)—before warmup, Load Genera-
tor benchmarks the number of cycles a timing unit can
complete in a function sandbox (e.g., container, yVM)
for a given testbed. As a result, each function knows how
much actual work it has done by counting cycles instead
of relying on timers. This timing mechanism is immune
to kernel traps (§3.3) as the internal counter of each func-
tion only measures the work done. To make the timing
unit more dependent on the hardware rather than the soft-
ware (e.g., the compiler, the version of vHive), we use an
x86 instruction sqrt sd commonly available in modern
processors [S5]. Also, this instruction is commonly backed
by one port and a single execution unit (e.g., DIVIDE),
which intrinsically lessens the timing variability caused by
deep pipelines [6]. As a result, our cycle-based implemen-
tation is precisely bounded by the hardware capacity and
obviates measuring other factors, e.g., context switching
(Fig. 6). In terms of memory allocation, Load Generator
evenly distributes the memory footprint of an Azure appli-
cation [47] to its functions (akin to [18]. It requests mem-
ory also via mmap but touches 50% of allocated memory
pages (not all published memory footprints correspond to
physical memory [10]).

5 Characterization & Future Work

Our methodology enables reliable, analytical reasoning of
performance of serverless policies. Being able to sweep
real workloads is one of such use cases. Another is the
quantitative characterization of serverless-specific fea-
tures. For instance, cycle-based function implementation
enables researchers to analytically reason about system
performance as functions get shorter. With vHive, as we

) P : i
B 40 [t : :
s P : :
vy 1 1 1 1 . .
2] i] ! Function Duration [ms]
=30 i | i i o 25
>]]]]
g lxi 2x‘} 4x‘} 8xi. 50
% 20 : : : = 100
- Lo | i
E \w‘} 1 1 : i)
310 ‘1; % J’ Jﬁﬁoﬁ 1 O Throughput Elbow Point
@ o A e il : :
(Z\ vw@wszm‘-‘@ i -- Expected Scaling

0 200 400 600

RPS

Figure 9: Latency measurements (p50) of functions with various
durations. The elbow points gradually lag behind the expected
throughput scaling, indicating larger fractions of system over-
heads starting to dominate when functions get shorter.

reduce the function duration from 200 ms to 100 ms and
then to 50 ms, we obtain approximately 2Xx and ~4X the
throughput respectively (Fig. 9). However, such expected
scaling stops when function duration is reduced further,
e.g., from 50 ms to 25 ms, due to the increasing fraction
of system overheads, such as network virtualization, re-
mote procedure call. This system tax induces about 5 ms
of base latency, which is instrumental to be further broken
down.

6 Conclusion

This paper proposes an end-to-end methodology for
serverless experiments. It addresses fundamental, method-
ological problems, including workload modeling, clus-
ter configuration, system warm-up, implementation of
benchmark function, and load generation. We realize our
methodology by building an out-of-box serverless exper-
iment platform that produces representative workloads,
enables in vitro experiments with clusters of arbitrarily
smaller sizes, and makes performance testing more reli-
able and reproducible.

References

[1] Openwhisk https://openwhisk.apache.org/, 2016.
[2] Fnhttps://fnproject.io/, 2022.

[3] Google cloud function quota https://cloud.google.
com/functions/pricing, 2022.

[4] Lambda quotas https://docs.aws.amazon.com/
lambda/latest/dg/gettingstarted-1limits.
html, 2022.

[S] ABEL, A., AND REINEKE, J. uops.info: Characterizing la-
tency, throughput, and port usage of instructions on intel microar-
chitectures. In ASPLOS (New York, NY, USA, 2019), ASPLOS
’19, ACM, pp. 673-686.

[6] ABEL, A., AND REINEKE, J. uiCA: Accurate throughput
prediction of basic blocks on recent Intel microarchitectures. In
ICS °22: 2022 International Conference on Supercomputing, Vir-
tual Event, USA, June 27-30, 2022 (June 2022), L. Rauchwerger,

https://openwhisk.apache.org/
https://fnproject.io/
https://cloud.google.com/functions/pricing
https://cloud.google.com/functions/pricing
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html

[7

—

[8]

[9]

[10]

(11]

(12]

(13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

K. Cameron, D. S. Nikolopoulos, and D. Pnevmatikatos, Eds., ICS
’22, ACM, pp. 1-12.

AGACHE, A., BROOKER, M., IORDACHE, A., LIGUORI,
A.,NEUGEBAUER, R., PIWONKA, P., AND POPA, D.-M.
Firecracker: Lightweight virtualization for serverless applications.
In 17th USENIX symposium on networked systems design and
implementation (NSDI 20) (2020), pp. 419-434.

AkkuUs, I. E., CHEN, R., RimMmac, I., STEIN, M.,
SATZKE, K., BECK, A., ADITYA, P., AND HILT, V.
{SAND}: Towards {High-Performance} serverless computing.
In 2018 Usenix Annual Technical Conference (USENIX ATC 18)
(2018), pp. 923-935.

ANDERSON, T., AND DARLING, D. A test of goodness
of fit. Journal of the American Statistical Association 49 (1954),
765-769.

AZURE. functions dataset 2019 trace
analysis https://github.com/Azure/
AzurePublicDataset/blob/master/analysis/
AzureFunctionsDataset2019-Trace_Analysis.
md, Jun 2020.

Cal, X., Wu, X., ZHOU, X., ET AL. Optimal stochastic
scheduling, vol. 5. Springer, 2014.

Azure

CopPIiK, M., KWASNIEWSKI, G., BESTA, M., PoD-
STAWSKI, M., AND HOEFLER, T. Sebs: A serverless bench-
mark suite for function-as-a-service computing. In Proceedings of
the 22nd International Middleware Conference (2021), pp. 64-78.

DELIMITROU, C., AND KOZYRAKIS, C. ibench: Quan-
tifying interference for datacenter applications. In 2013 IEEE
international symposium on workload characterization (IISWC)
(2013), IEEE, pp. 23-33.

DELIMITROU, C., AND KOZYRAKIS, C. Quasar: Resource-
efficient and qos-aware cluster management. ACM SIGPLAN No-
tices 49, 4 (2014), 127-144.

DEMOULIN, H. M., FRIED, J., PEDISICH, I., KOGIAS,
M.,Loo,B.T., PHAN,L. T. X., AND ZHANG, I. When
idling is ideal: Optimizing tail-latency for heavy-tailed datacenter
workloads with perséphone. In Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles (2021), pp. 621—
637.

Du,D., Yu, T., X1A, Y., ZANG, B., YAN, G., QIN, C.,
WU, Q., AND CHEN, H. Catalyzer: Sub-millisecond startup for
serverless computing with initialization-less booting. Proceedings
of the Twenty-Fifth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (2020).

FRIED, J., RUAN, Z., OUSTERHOUT, A., AND BELAY,
A. Caladan: Mitigating interference at microsecond timescales.
In 74th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20) (2020), pp. 281-297.

FUERST, A., AND SHARMA, P. Faascache: keeping serverless
computing alive with greedy-dual caching. Proceedings of the
26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (2021).

GENTLE, J. E. Random number generation and Monte Carlo
methods, vol. 381. Springer, 2003.

Google cluster-usage traces.
com/google/cluster—-data/blob/master/
ClusterData2011_2.md.

Google cluster workload traces.
//research.google/tools/datasets/
google-cluster-workload-traces-2019/.

https:

GRANGER, C. W. J., AND JOYEUX, R. An introduction
to long memory time series models and fractional differencing.
Journal of Time Series Analysis 1 (1980), 15-29.

https://github.

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]
[33]

[34]

[35]

[36]

[37]

[38]

HARCHOL-BALTER, M. Performance modeling and design
of computer systems: queueing theory in action. Cambridge Uni-
versity Press, 2013.

KAFFES, K., YADWADKAR, N.J., AND KOZYRAKIS, C.
Practical scheduling for real-world serverless computing. ArXiv
abs/2111.07226 (2021).

KASAN,H.,KiM, G., Y1, Y., AND KiM, J. Dynamic global
adaptive routing in high-radix networks. In Proceedings of the
49th Annual International Symposium on Computer Architecture
(2022), pp. 771-783.

KASTURE, H., AND SANCHEZ, D. Tailbench: a benchmark
suite and evaluation methodology for latency-critical applications.
In 2016 IEEE International Symposium on Workload Characteri-
zation (IISWC) (2016), IEEE, pp. 1-10.

KiM, J., AND LEE, K. Functionbench: A suite of workloads for
serverless cloud function service. In 2019 IEEE 12th International
Conference on Cloud Computing (CLOUD) (2019), IEEE, pp. 502—
504.

Krimovic, A., WANG, Y., STUEDI, P., TRIVEDI, A.,
PFEFFERLE, J., AND KOZYRAKIS, C. Pocket: Elastic
ephemeral storage for serverless analytics. In /3th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI
18) (2018), pp. 427-444.

KOGIAS, M., MALLON, S., AND BUGNION, E. Lancet: A
self-correcting latency measuring tool. In USENIX Annual Tech-
nical Conference (2019).

LEE, J., KiM, C., LIN, K., CHENG, L., GOVINDARAIJU,
R., AND KiM, J. Wsmeter: A performance evaluation method-
ology for google’s production warehouse-scale computers. In
Proceedings of the Twenty-Third International Conference on Ar-
chitectural Support for Programming Languages and Operating
Systems (2018), pp. 549-563.

Lo, D., CHENG, L., GOVINDARAJU, R., RAN-
GANATHAN, P., AND KOZYRAKIS, C. Heracles: Improving
resource efficiency at scale. In Proceedings of the 42nd Annual
International Symposium on Computer Architecture (2015),
pp. 450-462.

LTD, O. Openfaas https://www.openfaas.com/, 2022.

Lvuo, S., Xu,H.,Lu, C., YE, K., XU, G., ZHANG, L.,
DING, Y., HE, J., AND XU, C. Characterizing microservice
dependency and performance: Alibaba trace analysis. In Proceed-
ings of the ACM Symposium on Cloud Computing (2021), pp. 412—
426.

MAGALHAES, D., CALHEIROS, R. N., BUYYA, R., AND
GOMES, D. G. Workload modeling for resource usage analy-
sis and simulation in cloud computing. Computers & Electrical
Engineering 47 (2015), 69-81.

MAHGOUB, A., WANG, L., SHANKAR, K., ZHANG, Y.,
TIAN, H., MITRA, S., PENG, Y., WANG, H., KLIMOVIC,
A., YANG, H., ET AL. {SONIC}: Application-aware data pass-
ing for chained serverless applications. In 2021 USENIX Annual
Technical Conference (USENIX ATC 21) (2021), pp. 285-301.

MAISSEN, P., FELBER, P., KROPF, P., AND SCHIAVONI,
V. Faasdom: A benchmark suite for serverless computing. In Pro-
ceedings of the 14th ACM International Conference on Distributed
and Event-based Systems (2020), pp. 73-84.

MASSEY, F. J. The kolmogorov-smirnov test for goodness of fit.
Journal of the American Statistical Association 46 (1951), 68-78.

McCLURE, S., OUSTERHOUT, A., SHENKER, S.,
AND RATNASAMY, S. Efficient scheduling policies for
{Microsecond-Scale} tasks. In /9th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 22) (2022),
pp. 1-18.

https://github.com/Azure/AzurePublicDataset/blob/master/analysis/AzureFunctionsDataset2019-Trace_Analysis.md
https://github.com/Azure/AzurePublicDataset/blob/master/analysis/AzureFunctionsDataset2019-Trace_Analysis.md
https://github.com/Azure/AzurePublicDataset/blob/master/analysis/AzureFunctionsDataset2019-Trace_Analysis.md
https://github.com/Azure/AzurePublicDataset/blob/master/analysis/AzureFunctionsDataset2019-Trace_Analysis.md
https://github.com/google/cluster-data/blob/master/ClusterData2011_2.md
https://github.com/google/cluster-data/blob/master/ClusterData2011_2.md
https://github.com/google/cluster-data/blob/master/ClusterData2011_2.md
https://research.google/tools/datasets/google-cluster-workload-traces-2019/
https://research.google/tools/datasets/google-cluster-workload-traces-2019/
https://research.google/tools/datasets/google-cluster-workload-traces-2019/
https://www.openfaas.com/

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

MICROSOFT. Event-driven scaling in azure functions
https://docs.microsoft.com/en-us/azure/
azure-functions/event-driven-scaling,

2022.

Jun

MITTAL, V., QI, S., BHATTACHARYA, R., LYU, X., LI,
J., KULKARNI, S. G.,L1,D., HWANG, J., RAMAKRISH-
NAN, K. K., AND WooD, T. Mu: An efficient, fair and respon-
sive serverless framework for resource-constrained edge clouds.
Proceedings of the ACM Symposium on Cloud Computing (2021).

MOONEY, C.Z., MOONEY, C. F.,, MOONEY, C. L., DU-
VAL, R. D., AND DUVALL, R. Bootstrapping: A nonpara-
metric approach to statistical inference. No. 95. sage, 1993.

MORENO, I. S., GARRAGHAN, P., TOWNEND, P., AND
XU, J. Analysis, modeling and simulation of workload patterns in
alarge-scale utility cloud. IEEE Transactions on Cloud Computing
2,2(2014), 208-221.

OAKES,E., YANG,L.,ZHoU,D.,HouCK, K., HARTER,
T., ARPACI-DUSSEAU, A., AND ARPACI-DUSSEAU, R.
{SOCK}: Rapid task provisioning with {Serverless-Optimized}
containers. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18) (2018), pp. 57-70.

OUSTERHOUT, A., FRIED, J., BEHRENS, J., BELAY,
A., AND BALAKRISHNAN, H. Shenango: Achieving high
{CPU} efficiency for latency-sensitive datacenter workloads. In
16th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 19) (2019), pp. 361-378.

RoY,R.B.,PATEL, T., AND TIWARI, D. Icebreaker: warm-
ing serverless functions better with heterogeneity. Proceedings of
the 27th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (2022).

SAXENA, D., J1, T., SINGHVI, A., KHALID, J., AND
AKELLA, A. Memory deduplication for serverless computing
with medes. Proceedings of the Seventeenth European Conference
on Computer Systems (2022).

SHAHRAD, M., FONSECA, R., GOIRI, [., CHAUDHRY,
G. I., BATUM, P., COOKE, J., LAUREANO, E., TRES-
NESS, C., RUSSINOVICH, M., AND BIANCHINI, R.
Serverless in the wild: Characterizing and optimizing the server-
less workload at a large cloud provider. In USENIX Annual Tech-
nical Conference (2020).

SINGHVI, A., BALASUBRAMANIAN, A., HoucCk, K.,
SHAIKH,M.D., VENKATARAMAN, S., AND AKELLA, A.
Atoll: A scalable low-latency serverless platform. In Proceedings
of the ACM Symposium on Cloud Computing (2021), pp. 138-152.

TIRMAZI, M., BARKER, A., DENG, N., HAQUE, M. E.,
QIN, Z. G., HAND, S., HARCHOL-BALTER, M., AND
WILKES, J. Borg: the next generation. In Proceedings of the
fifteenth European conference on computer systems (2020), pp. 1—-
14.

UstiuGgov, D., PETROV, P., KOGIAS, M., BUGNION,
E., AND GROT, B. Benchmarking, analysis, and optimization of
serverless function snapshots. In Proceedings of the 26th ACM In-
ternational Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’21) (2021), ACM.

VERMA, A., KORUPOLU, M. R., AND WILKES, J. Evalu-
ating job packing in warehouse-scale computing. 2014 IEEE Inter-
national Conference on Cluster Computing (CLUSTER) (2014),
48-56.

VERMA, A., PEDROSA, L., KORUPOLU, M. R., OPPEN-
HEIMER, D., TUNE, E., AND WILKES, J. Large-scale
cluster management at google with borg. Proceedings of the Tenth
European Conference on Computer Systems (2015).

[53] YOUNG,E.G.,ZHU,P.,CARAZA-HARTER, T., ARPACI-
DUSSEAU,A.C.,AND ARPACI-DUSSEAU, R. H. The true
cost of containing: A {gVisor} case study. In /7th USENIX Work-
shop on Hot Topics in Cloud Computing (HotCloud 19) (2019).

ZHANG, Y., GOIRI, 1., CHAUDHRY, G. 1., FONSECA, R,
ELNIKETY, S., DELIMITROU, C., AND BIANCHINI, R.
Faster and cheaper serverless computing on harvested resources. In
Proceedings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles (2021), pp. 724-739.

[54]

[55] ZHANG, Y., MEISNER, D., MARS, J., AND TANG, L.

Treadmill: Attributing the source of tail latency through precise
load testing and statistical inference. In 2016 ACM/IEEE 43rd An-
nual International Symposium on Computer Architecture (ISCA)
(2016), IEEE, pp. 456-468.

A Appendix

A.1 Stationarity Test on System Overheads

To develop and evaluate scheduling policies, we take spe-
cial interests in the long-running behaviors of serverless
systems. To this end, the system needs to be first warmed
up to a stable state like the systems in production, before
starting any actual measurements. This requirement gives
rise to one question: How fo systematically determine
when the system has been sufficiently warmed up? Too
long a warm-up would waste time at each experiment run
whereas if it is too short, insufficient warm-up would re-
sult in a host of problems (e.g., fluctuating measurements
with increasing/decreasing trends).

Serverless systems are queuing machines. When the
arrival rate is roughly the same as the service rate, the sys-
tem can achieve a relative equilibrium, i.e., a stable, long-
running state [25,29]. To tackle this challenge, we take
inspiration from Lancet [29] where observed end-to-end
(E2E) latencies (response times) are used for determining
the system state. This approach is intuitive since latency
directly reflects the queuing state of the system, i.e., a de-
creasing trend in latencies imply that the system is still
warming up, and when the system is overloading, the la-
tencies would exhibit clear increasing trends. To capture
such trending, Lancet employs augmented Dickey-Fuller
tests (ADF) for testing the stationarity of time series data
by checking whether it has a unit root. Stationarity guaran-
tees that the mean of time series measurements is stable,
and the variance does not have clear trends either. It is
the premise of most predictive time series models such as
ARIMA used in [47].

However, our approach is different from Lancet—we
do not directly use E2E latencies for checking stationar-
ity. This is because, unlike Lancet that generates com-
pletely synthetic loads, Load Generator generates real-
world workloads that commonly exhibit periodicity [45].
Periodic data with fixed recurrent patterns is not station-
ary, which can mislead the ADF test. Instead, we check
the pure system overheads obtained by subtracting the ex-

https://docs.microsoft.com/en-us/azure/azure-functions/event-driven-scaling
https://docs.microsoft.com/en-us/azure/azure-functions/event-driven-scaling

ecution time from E2E latencies. Pure system overheads
are induced by various kinds of system taxes such as, net-
work latency, queuing delay, container operation time, etc.
These overheads of long-running services in a stable pro-
duction environment are stationary (i.e., without drasti-
cally increasing or decreasing trends). To reason about
it formally, without lose of generality, we model E2E la-
tencies using a common autoregressive—moving-average
(ARMA) model with p lags and g error-lags:

p q
10 =ag+ Y a, 170+ 4+ Y g0 420, (1)
k=1

7=1

where /) is the E2E latency measure and) ~ N'(0, 62)
is the error term, and /¥) is the corresponding execution
time at time 7. a; and f; denote the constant coefficients.
Now, let y® be the pure system overhead where y «
1M — z® and Ey = c. Then, Eq. 1 can be rewritten as:

P
10 = + Z a - (Y0 +2070) 4 €0
=1

q
+ 3 g el 4 20
k=1

= a v +a. -z Oy g .z ® 2
ag+a,-y,ta,-z,+e +ﬂq €tz 2

Then, we derive Eq. 3 by taking the expectation of Eq. 2:

E[") = Eay+E [, §,| + E [a, - Z,] + Ee®
+E [ﬁq : Eq] +Ez®
c+

=ay+d, ¢+, EZ,+Ez", 3)
where only the last two terms that depend on the execu-
tion time z are not constant. In turn, we thereby proved
that, when hosting real-world traces, it is important to sub-
tract the execution time from the E2E latencies in order
to prevent the ADF test from being biased by the mea-
surements. For completeness, another way of testing sta-
tionarity with E2E latencies is via differencing [22] (e.g.,
ARIMA). However, this method requires fitting the peri-
odicity to obtain the differencing lag value for every type
of workloads, which is not as feasible since the sample
traces vary in function composition.

10

	Introduction
	Workload Modeling
	Problems in Existing Workload Models
	In Vitro Trace Sampling and Scaling

	In Vitro Serverless Clusters
	Cluster Configuration
	Two-Phase Warm-up
	Function Implementation

	End-to-End Experiment Platform
	Characterization & Future Work
	Conclusion
	Appendix
	Stationarity Test on System Overheads

