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1 INTRODUCTION

In this document, I first review two relevant papers (§2, §3), briefly
summarizing their respective strengths and weaknesses, along with
my takeaways. Following the reviews, I motivate and describe two
research questions in §4, with the aim of extending the insights
derived from the these works.!

2 REVIEW OF HABITAT

In this section, I provide a brief review of Habitat [10], given my
current level of understanding.

2.1 Brief Summary

Target problem. The paper addresses the challenge faced by
deep learning researchers and practitioners in choosing a GPU
for training their deep neural networks (DNNs). The problem is
twofold: (i) there are many GPU options available, and (ii) users
struggle to balance the competing concerns of maximizing compute
performance while minimizing costs.

Key contributions.

(1) The paper introduces a new technique called Wave Scaling, which

scales the execution time of a kernel measured on one GPU to

a different GPU. The result is achieved by using scaled ratios

between the number of compute units on each GPU and their

memory bandwidths.

(2) The authors develop Habitat, a new library that utilizes Wave

Scaling along with pre-trained multilayer perceptrons (MLPs) to

predict the execution time of model training iterations on different

GPUs.

(3) The authors evaluate Habitat across six different GPU architec-
tures, demonstrating its effectiveness in making accurate iteration
execution time predictions with an average error of 11.8% on
various DNN models.

Main takeaways. Firstly, the paper presents a practical tech-
nique that leverages runtime information to assist users in making
cost-efficient GPU selections for DNN training (S2). Secondly, the
combination of analytical and predictive modeling methods (S3)
makes Habitat both generally applicable and cost-efficient (com-
pared to pure analytical/predictive methods).

2.2 Strength
Below, I describe the strong points (Ss) of this work.

(S1) Demonstrating the predictable dynamics of ML training

workloads. This study illuminates the inherently repetitive na-
ture of ML workloads, underscoring their predictability. Notably,
this predictability extends consistently across diverse model and
device configurations, encompassing critical factors such as batch
size and GPU architecture, which can substantially influence
model quality.

To maintain clarity, I use § to refer to the sections in this document. “Section” is
exclusively used to refer to that of the reviewed papers.

(S2) Notable monetary and environmental impacts. This research

holds timely significance, given that ML workloads represent some
of the most resource-intensive jobs in the cloud, demanding sub-
stantial financial investments and consuming thousands of MWh
of energy. The ability to determine the optimal performance con-
figuration without relying on trial and error stands to substantially
reduce both financial expenditures and environmental costs.

(S3) Combining analytical and predictive models. The authors

employ the Wave Scaling method to model the performance of
kernel operations of fixed implementations. This method cleverly
utilizes the GPU-specific scheduling mechanism of thread blocks,
offering an accurate and cost-effective analytical performance
model that is applicable across various GPU types. In scenarios
where the kernel’s implementation is platform-specific, black-box
predictive models are employed. This hybrid approach is pivotal
for system modeling.

(S4) Efficient generation of synthetic training data. A central chal-

lenge in ML for systems is the initial scarcity of training data. Ad-
dressing this hurdle, the authors employ a cost-effective strategy
to generate substantial amounts of training data by systematically
varying the model and input configurations.

2.3 Weaknesses

In this section, briefly summarize the weak points (W) of this work,
as well as potential opportunities for improvements.

(W1) Simple heuristic baseline. In Section 2.3, the authors introduce

a straightforward heuristic based on peak FLOPS to predict execu-
tion time, serving as a baseline. However, its simplicity prompts
consideration of alternatives, such as simulation (e.g., [20, 23]),
which may offer a stronger baseline for comparison. Notably, Fig-
ure 1 reveals that the model predictions consistently overestimate
actual execution times by approximately 50-60%. As a potential
enhancement, a straightforward adjustment would be reducing
the estimation by around ~ 33-37% for all heuristic predictions,
which could narrow the margin between this baseline and the
error rate achieved by Habitat (10.2%).

(W2) Performance variation and accumulative errors. While ac-

knowledging the repetitive nature of ML training workloads, prior
work has shown substantial performance variation (as large as
14% [6]) among iterations even using the same configuration. Al-
though the paper has well motivated the repetitiveness, some
illustration on variance (e.g., error bars) would be valuable. More-
over, it is noteworthy that the paper employs prediction error on
single-iteration performance throughout the conducted experi-
ments. However, it is essential to recognize that such prediction
errors may accumulate over thousands of training steps, poten-
tially leading to substantially larger errors than those observed in a
single iteration. Consideration of cumulative errors over extended
training durations would offer a more comprehensive understand-
ing of the model’s predictive performance.



(W3) Optimizing model selection. The authors employ MLPs to

model kernel-varying operations, a task considered relatively
straightforward, especially when analytical modeling is feasible
for a specific a device. Given the specificity of the task and the
relatively small amount of synthetically generated training data
in this work, it is worth noting that MLPs, as universal function
approximators [14], tend to require more data to achieve a certain
level of performance compared to other models of similar size.
To explore model efficiency, introducing simpler models such as
decision trees/forests, along with corresponding ablation studies,
could provide valuable insights.

(W4) Exploring multitasking opportunities. The authors train a

separate MLP to model each kernel-varying operation, while these
downstream tasks belong to the same category. To enhance the
cost-effectiveness of the proposed method, it would be beneficial
to investigate the feasibility of employing a unified model for some
or all kernel-varying tasks. Exploring multitasking capabilities,
where a single model addresses multiple related tasks.

(W5) Scalability concerns in multi-device deployment. The increas-

ing size of ML models, exceeding the capacity of single GPUs like
A100 for models larger than 7 billion parameters, necessitates the
exploration of distributed training with multiple devices. Multi-
device settings introduce complexities related to parallelization
schemes and network bandwidth, influencing performance met-
rics such as tail latency and throughput, especially at scale 7, 13].
However, this work lacks experiments on such multi-device set-
tings, leaving doubts regarding the transferability of findings to
larger distributed setups (Section 6.1.1).

(W6) Alternative hardware representations. The authors opt for a

straightforward representation of GPUs, relying on specifications
such as memory capacity and peak FLOPS. Although simple, the
information captured by these data points might not be sufficient
for the prediction model. Alternative methods, such as encoding
hardware directly into a latent space and utilizing embedding
vectors as input to the prediction model [1], have been proposed.
Similarly, hardware representation can be enriched by leveraging
runtime statistics collected from executing a set of representative
workloads.

(W7) Integrating energy efficiency as a metric of interest. Al-

though this work could reduce both monetary and environmental
costs (82), it does not directly incorporate energy efficiency as
an optimization objective. In the cloud, ML workloads are power
bound [17, 25-28, 30], where energy consumption stands as a bot-
tom line of cloud providers [4, 18]. Recognizing that performance
does not translate directly to energy efficiency, it is pivotal to
extend the scope of metrics to encompass energy considerations.
Relying solely on performance metrics dismisses the significant
impact of power consumption, and incorporating energy efficiency
in the design space could drastically change the tradeoff contin-
uum [29], which partially motivated RQ1 (§4.1).

3 REVIEW OF ZEUS

In this section, I provide a brief review of Zeus [29].
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3.1 Brief Summary

Target problem. The paper addresses the increasing resource-
and energy-intensiveness of training DNNGs. It recognizes that ex-
isting works tend to focus on optimizing DNN training for faster
completion without considering the impact on energy efficiency.
The primary problem is the tradeoff between performance opti-
mization and energy consumption in DNN training.

Key contributions.

(1) The paper introduces the idea that common practices aimed at im-

proving DNN training performance can lead to inefficient energy
usage, highlighting the existence of a tradeoff between energy
consumption and training time. The work claims to be the first
to characterize this tradeoff, providing a fresh perspective on the
optimization challenge.

(2) The authors develop and evaluate Zeus, an optimization frame-

work designed to automatically discover optimal job- and GPU-
level configurations for recurring DNN training jobs. It employs an
online exploration-exploitation approach along with just-in-time
energy profiling, reducing the need for costly offline measure-
ments, and learning from and adapting to workload dynamics
over time.
Main takeaways. Firstly, achieving performance optimality
does not directly translate to achieving energy efficiency. In fact,
they naturally form a Pareto frontier. Secondly, similar to Habitat,
the Zeus framework provides a practical solution for the commu-
nity; it automatically tunes job- and GPU-level configurations, and
offers real-world applicability and environmental impacts.

3.2 Strength

(s1) Emphasizing neglected tradeoff. This work urgently highlights

a commonly overlooked tradeoff between performance and energy
efficiency. It emphasizes that improved performance does not
necessarily equate to enhanced energy efficiency; instead, they
shape a Pareto frontier, with each metric residing on one axis of the
design space. Navigating this space effectively involves striking a
delicate balance between the linear power-time relationship and
the quadratic (or even cubic, accounting for frequency scaling)
frequency-power relationship.

(s2) Model- and device-agnostic online tuning. A key challenge

for existing online optimization tools lies in the necessity for
users to define a range of instance-specific configurations. The
proposed approach addresses this challenge by introducing auto-
mated online tuning, enhancing usability and thereby increasing
the likelihood of adoption. Notably, this method eliminates the
need for offline profiling or hardware modification. It exhibits
the ability to generalize across different models and GPU types
without inducing accuracy degradation.

(s3) Strategic selection of tuning parameters. Among the tunable

parameters affecting the duration and/or energy consumption of
a training workload, such as learning rate scheduling and DVFS
policy, the authors strategically selected two specific parameters:
batch size (impacting training duration) and GPU power cap (influ-
encing energy consumption). This choice is smart for two primary
reasons: (1) these two factors exhibit direct and relatively isolated
effects on each of the two tradeoff dimensions, and (2) they have
the ability to hide and influence various underlying tuning options
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(e.g., adjustments in the power cap automatically trigger changes
in DVFS).
(s4) Applicable to single-node multi-GPU setup.?.

3.3 Weaknesses

(w1) (Potentially) redundant characterization and experiments.
While acknowledging the importance of emphasizing the tradeoff
between performance and energy (s1), it is worth noting that the
non-linear relationship and associated implications have been
extensively explored over the past decades. For instance, the out-
comes illustrated in Figure 2 align with expectations: energy con-
sumption scales almost quadratically with training duration (due
to increased frequency). Similarly, the observed characteristics
of the (32, 100W) configuration, with the lowest energy cost due
to the tradeoff between runtime and energy efficiency, are also
anticipated. Consequently, these experiments could potentially
be considered redundant, offering limited new insights to the
community.

(w2) No evaluation on the performance/energy overheads of the
proposed method. While the authors claim that Zeus has “neg-
ligible overhead,” the evaluation results provided do not offer
insights into the costs associated with integrating its workflow.
Specifically, such runtime optimization tools can induce perfor-
mance overheads [21, 22], as well as introduce additional energy
costs [12].

(w3) Questionable assumption on retraining. The authors hinge on
the assumption that the same model undergoes periodic retrain-
ing, utilizing these retraining jobs to explore diverse model and
device configurations. However, in my experience, practical in-
dustry scenarios often involve companies updating models during
retraining, introducing potential alterations to the optimization
space. Thus, providing additional evidence or insights into the
frequency and patterns of retraining could help substantiate this
proposition.

(w4) Unjustified use of overall average power. The energy-to-accuracy
calculation in Eq. 1 employs the overall average power over the
training period, rather than using sampling. Aggregating over an
extended duration may lead to inaccuracies, as demonstrated by
the example: 2 X 2+ 1 X3 # (2+1) X (24 3)/2. Such errors have
the potential to accumulate significantly over time.

(w5) Rough evaluation for multi-GPU settings. The comparison
with the prior work (Pollux) in Section 6 appears to be a bit
hasty, lacking sufficient setup details or specific information on
the sources of energy consumption. Critical details, such as the
parallel scheme employed and the measured device power lanes
in the evaluation, are notably absent.

4 POTENTIAL NEXT STEPS

In this section, I elaborate on two potential research questions (RQs)
inspired by the insights gained from prior work (§2, §3).

2However, the evaluation needs further refinement and specificity (w5)

4.1 Balancing Energy and Performance for
Distributed ML Training

Motivation. Hardware specialization is rapidly advancing, lead-
ing to increasingly heterogeneous devices deployed in the cloud.
This evolution is particularly pronounced when it comes to ML
workloads in the cloud, where a variety of accelerators (e.g., GPUs
and systolic arrays) are being employed. Unfortunately, these accel-
erators are power-bound [17, 25-28, 30], and their designs are heav-
ily centered around cooling due to extreme power density [4, 18].
ML jobs often span prolonged durations, sometimes lasting for
days or even months. For instance, the training of massive models
like GPT-3 incurs an astonishing energy consumption, equivalent
to the energy usage of an average American household over 120
years. Consequently, ML workloads are one of the biggest energy
consumers in the cloud, which makes them expensive both for the
users and cloud providers. Therefore, optimizing energy efficiency
of these training workloads becomes imperative.

Gap. While Zeus proposes an online optimization method for im-
proving ML training energy efficiency by co-optimizing the training
configuration for a given GPU device and a model, such a device-
specific approach is inadequate. The existence of a diverse range
of accelerator types, each manifesting distinct performance-energy
characteristics, can result in significant variations in energy effi-
ciency [15, 18, 28]. Furthermore, energy efficiency is also task-specific.
For instance, even within the same model family (e.g., recommen-
dation models [11, 15]), the energy-optimal configuration varies
among tasks.

Although Habitat excels at predicting the performance of a
model’s training on a designated device, it lacks consideration for
energy efficiency as a primary optimization objective (W6). More-
over, its applicability does not naturally extend to a distributed
setting (W7, W5).

Hence, I propose to develop an extension to Habitat that facil-
itates users in automatically choosing the most energy-efficient
combination of device type and training parallel scheme, tailored
to a specific model and downstream task. This objective forms the
basis for RQ1.

RQ1: How can we develop a cost-effective, automated method
that helps users select the most energy-efficient ML training
configuration tailored to a specific model and downstream
task, while meeting user-defined performance objectives
such time-to-accuracy (TTA)?

Challenges. Similar to estimating performance in Habitat, char-
acterizing the energy efficiency of ML training jobs is equally
resource-intensive in terms of both time and cost. Consequently,
manual measurement for every training setup is impractical. More-
over, aside from the inherent stochasticity in ML workloads (W2),
the mapping from performance counters and relevant statistics
to accelerator energy consumption is inherently non-linear. Most
accelerators (e.g., GPU [19, 23], TPU [18], and FPGAs [8]) utilize
dynamic frequency scaling to prevent overheating, introducing
additional complexities to power modeling and estimation [19].
Last but not least, estimating energy consumption in a distributed
setting also poses challenges. The communication and data transfer
between devices can contribute to non-negligible energy costs.
Tracing these consumption sources, however, is a non-trivial task [2,



12, 33]. Another potential source of difficulty in a distributed setting
is the increased uncertainty and variation, given that stragglers and
other related hardware issues could skew the results [13].
Research Approach to RQ1. In comparison to Habitat (§2),
RQ1 introduces an additional optimization objective, energy effi-
ciency, and extends the scope to include device type and parallel
training scheme as automatic optimization targets, which were not
explicitly considered in Zeus (§3). However, several methodolo-
gies from both Habitat and Zeus can be leveraged to address this
question.

Firstly, as well motivated in Habitat, recognizing the prevalence
and accessibility of GPUs, especially in the context of ML work-
loads, the study should initially focus on GPUs as a starting point.
Secondly, the assumption in Habitat about users having a local
device remains valuable, providing a basis for further estimations
and predictions. However, this assumption’s utility may be dimin-
ished considering the incorporation of parallel training schemes,
since assuming users have a cluster of devices might be a tall or-
der. Thirdly, drawing inspiration from S3, I plan to use a hybrid

approach combining validated analytical models (e.g., [19, 23]) and
predictive methods. This approach is necessary when dealing with
the inherent difficulty or impossibility of tracing certain consump-
tion sources [2, 33]. To train the predictive model, I plan to employ
a strategy similar to S4, starting with generating synthetic training
data by varying setup and input configurations. However, alter-
native hardware representations could be explored, distinct from
those used in Habitat (W6).

Lastly, to navigate the expanded design space, automated trade-
off exploration akin to s2 should be incorporated. Given the en-
larged optimization landscape due to added dimensions, and the
necessity of deciding certain configurations in advance (e.g., device
type and parallel schemes), a combination of online and offline
optimization appears to be more practical.

4.2 Using ML Training Workloads for
Datacenter Power Objectives via
Energy-Aware Scheduling

Motivation. Consuming almost 3% of global electricity, datacen-
ters are not only one of the biggest energy consumers but also play-
ing an increasingly critical role in balancing the supply and demand
of the power grid thanks to their huge capacity and load flexibility.
Specifically, by time- and space-shifting workloads, datacenters
can absorb excessive renewable energy by increasing dynamic load
and reduce their consumption when the carbon intensity is high
(e.g., due to undesirable weather conditions). This datacenter power
objective is known as demand response [24]. In fact, to help achieve
net-zero carbon emission goals by 2050, datacenters have to at least
double their participation in demand response programs [16].

Gap. Unfortunately, despite ML training being one of the most
energy-intensive workloads in the cloud, datacenters predomi-
nantly leverage batch jobs and scientific workloads for demand
response [31, 32]. This gap is partially attributed to concerns about
potential degradation in model quality, the diverse types of accelera-
tors, and the complexities associated with migrating ML workloads.
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Nevertheless, I believe that recent advancements make lever-
aging ML training workloads for demand response feasible.? For
instance, Zeus provides a promising solution for automatic tuning
of energy-efficient ML training without compromising model per-
formance (s2). Similarly, Habitat (S1) and recent works on GPU
energy modeling (e.g., [9, 19, 23]) demonstrate the predictability of
GPU performance and power characteristics, critical for planned
demand response. Moreover, substantial progress has been made in
dynamic scheduling for model training at runtime [3]. For example,
during the 51-day training of PaLM [5], model shards were fre-
quently relocated at runtime for reasons like resource preemption
and failure recovery. To address these gaps, I pose RQ2.

RQ2: How can we leverage ML training jobs for datacenter power
objectives such as demand response and hotspot mitigation?

Challenges. Addressing RQ2 entails extending the solution
proposed for RQ1 to a cluster scale and managing orchestration
across multiple ML training jobs. The resulting framework must not
only configure the model (e.g., batch size) and the accelerators (e.g.,
power cap) for each training job but also consider the cluster-wide
implications of the optimization. This optimization involves the
inherent energy-performance tradeoff (s1) - given a fixed cluster
power budget, reducing the power cap naturally leads to energy
saving but also performance degradation (e.g., a longer TTA), po-
tentially introducing concerns related to fairness and adherence
to users’ SLAs. Moreover, since the energy-optimal setting is both
model- and task-specific, building a dedicated power model and
deploying a monitoring agent for each workload may be necessary.
Lastly, evaluating the resulting framework also presents challenges,
potentially requiring collecting production traces at a reasonable
scale.

Research approach to RQ2. I plan to start with applying exist-
ing demand response methods designed for traditional batch jobs
and scientific workloads to ML training jobs, conducting a compre-
hensive literature review and evaluating available artifacts. As an
initial goal, I will attempt to schedule and configure training jobs
to consume the same amount of energy. This naive policy should
only consider homogeneous hardware (e.g., using the same type of
GPUs) without runtime relocation of model partitions. Such experi-
ments could provide me with insights into the impacts of this naive
policy on training performance (e.g., TTA) and simplify validation
and evaluation through trace-driven simulation.

Apparently, equalizing power budget over all training jobs is
unfair, since different models and downstream tasks would have a
different performance-energy Pareto frontier as described in pre-
vious sections. Consequently, the naive approach will likely to
result in varying performance degradations across training jobs.
Therefore, the subsequent step can aim to evenly distribute the
performance degradation across all training jobs. One potential
method is to employ runtime-based optimization (similar to Zeus
and Habitat) to adjust the model and device configuration when
performance degrades beyond the modeled behavior and attempt
to recover performance by, for example, rapidly increasing its power
budget in later stages. Another possible approach involves utilizing

3Although inference workloads typically amount to larger amounts of energy con-
sumption [28], they are more sporadic and much less intense. Training jobs are more
similar to traditional scientific workloads and, therefore, could potentially allow me to
apply some existing methods designed for demand response programs.
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detailed online/offline power profiles and leveraging complemen-
tary training jobs. For instance, it may be possible to reduce the
power budget of a memory- or I/O-bound training job by 20% and
simultaneously increase the power cap of a compute-bound job by
about 20%.

Dynamic model relocation at runtime on heterogeneous hard-
ware should only be considered if the aforementioned objectives
are achieved and validated. Other potential future directions could
include over-provisioning power budgets to further maximize uti-
lization and colocating workloads on a single GPU node based on
power profiles (e.g., distributing high-power jobs across the cluster
to create balanced power mixing). However, these are relatively
distant goals whose solutions depend on prior experiments.
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