
FPGA-based SmartNIC for
Distributed Machine Learning

Master’s Thesis Nr. 483

Hongyu Hè

hongyu.he@inf.ethz.ch

Systems Group
Department of Computer Science

ETH Zürich

Supervisors:
Wenqi Jiang

Prof. Dr. Gustavo Alonso

April 29, 2024

Acknowledgements

I am deeply grateful to my advisor, Prof. Dr. Gustavo Alonso, and my mentor,
Wenqi Jiang, for their invaluable guidance and support throughout this journey.
Their mentorship has been instrumental in shaping my academic path, and I
am immensely thankful for their expertise and support throughout. I would also
like to extend my gratitude to the Systems Group at ETH for providing such
a supportive and stimulating research environment. Interacting with brilliant
researchers from around the world has greatly enriched my learning experience.
Last but certainly not least, I am indebted to my mom and my grandparents for
their unwavering support. Despite not being able to be with them in person for
the past six years, their encouragement and love have been a constant source of
strength.

i

Abstract

Over the past decade, there has been an exponential growth in both the size of AI
models and the volume of training data. This surge has made distributed training
imperative, where workers synchronize in lockstep by transmitting large gradients
across the network. However, as compute power outpaces network bandwidth,
communication overhead has emerged as a critical bottleneck in distributed train-
ing. In response to this challenge, various gradient compression methods have
been proposed to reduce such communication overhead.

However, there are four main challenges that hinder the practical adoption
of existing gradient compression methods. Firstly, existing GPU-based gradi-
ent compression methods contend precious resources with gradient computation,
completely blocking the backward pass. As a result, they eliminate the oppor-
tunity for computation-communication overlap that is a crucial technique for
speeding up distributed training. Secondly, the interval of time for gradient
compression methods to process large amounts of gradient data is at the sub-
second level, demanding extremely high throughput. However, previous methods
often fail to meet such stringent performance requirements, leading to poor scal-
ability and the waste of network bandwidth. Thirdly, most of existing methods
are only compatible with certain cluster topologies, restricting their applicability
and usability. Lastly, while the effectiveness of gradient compression depends on
the workloads, existing methods are static. Consequently, they tend to perform
well only for specific models and downstream tasks, while suffering substantial
performance loss for other workloads.

To address these limitations, we introduce gCow, a hardware accelerator
that can be integrated into FPGA-based SmartNICs attached directly to GPUs
for on-the-wire gradient compression. gCow is platform- and topology-agnostic,
designed to necessitate minimal application-level modifications from users and
compatible with any collective communication primitives. We implement gCow
as an open-source, easy-to-use high-level synthesis library. gCow can preserve
full model quality on CIFAR10 and induces only 2-3% accuracy loss on Ima-
geNet, while reducing network communication overhead by 50×. By exploiting
both global dataflow pipelining and local block-level parallelism, gCow can sat-
urate 100 Gb network bandwidth, achieving performance comparable to and even
better than existing RTL counterparts. Furthermore, it empowers users with flex-
ible tuning options to tailor the compression algorithm to specific user workloads,
striking a desired balance between model quality and training speedup.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Motivation . 1

1.2 Gaps . 3

1.3 Contributions . 4

1.4 Scope . 4

2 Background 6

2.1 Distributed ML Training . 6

2.2 Accelerating Distributed ML Training 9

2.3 Gradient Compression Methods 9

2.4 ZFP Lossy Compression . 10

2.4.1 Key Features of ZFP . 10

2.4.2 CODEC Pipeline . 11

2.4.3 CODEC Modes . 14

2.4.4 Challenges of ZFP . 15

3 System Design of gCow 17

3.1 Characterization of ZFP . 17

3.1.1 Compression Ratio . 17

3.1.2 Workload-dependency of Compression Modes 18

3.2 Global Dataflow Pipeline . 20

3.3 Local Block-level Parallelization 22

3.4 Other Optimizations and Interface to SmartNICs 23

iii

4 Evaluation of gCow 25

4.1 Speedup from Dataflow . 25

4.2 Speedup from Block-level Parallelism 26

4.3 Comparing with Other ZFP Accelerators 27

4.4 Scaling out ML Training with gCow 30

5 Future Work and Conclusion 32

References 34

iv

List of Figures

1.1 Communication cost in scaling model training. 2

1.2 System overview of gCow. 3

2.1 Common data parallel training schemes. 7

2.2 Overlapping gradient computation and gradient compression. . . 8

2.3 Inner working of the implemented numerical CODEC from ZFP. 12

3.1 Compression ratio and cost of the three ZFP lossy modes. 18

3.2 Characterization of ZFP CODEC in ML gradient compression. . 19

3.3 Example Kahn Process Network. 20

3.4 Dataflow can reduce the critical path of a computation graph. . . 21

3.5 Global dataflow pipeline of gCow. 22

3.6 Overview of gCow implemented as a multi-rate dataflow system. 23

3.7 Pipelined burst memory writes. 24

4.1 Speedup from dataflow design. 26

4.2 Performance of the multi-rate dataflow network. 27

4.3 Throughput comparison with prior work. 28

4.4 Scaling model training with gCow in simulation. 29

v

Chapter 1

Introduction

Machine learning (ML) has seamlessly integrated into our daily lives, revolu-
tionizing virtually every sector of the industry. Its widespread success can be
primarily attributed to two pivotal factors: the exponential growth in model size
and the increasing amounts of training data. However, the continuous scaling in
these two dimensions faces mounting challenges. With the rapid stagnation of
Moore’s Law post the end of Dennard Scaling nearly a decade ago, increasing
the size of ML models and the amount of training data has become ever more
challenging.

1.1 Motivation

The proliferation of ML models has witnessed an unprecedented surge in scale,
with models now reaching trillions of parameters [1, 2, 3]. The Neural Scaling
Laws [4, 5, 6] project an ongoing trajectory of increase in models size, which
so far positively correlates with performance on downstream tasks, reflecting an
incessant pursuit of higher model quality. However, the improvement of (fast)
GPU memory capacity is unable to match this exponential increase. For in-
stance, a model just over 30 billion parameters requires more memory to train
than a single GPU can currently provide [7]. Moreover, ML training requires
staggering amounts of data, for example, GPT-4 [2] was trained on four tril-
lion tokens. Training such a model on a single device would have taken hun-
dreds of years. Consequently, distributed ML training methods (§2.1) have seen
widespread adoption, often involving hundreds or even thousands of devices work-
ing in lockstep.

Unfortunately, scaling ML training over a large compute cluster remains dif-
ficult due to many challenges, chief among which is the communication overhead
between devices. Specifically, for synchronous data parallel training, the amount
of data needed to be transmitted between two devices at each iteration is at least
equal to the model size1, which is typically on the scale of gigabytes. Moreover,

1Sometimes, other parameters from the optimizer state, such as the velocity values associated

1

21 22 23 24

Number of Workers (log 2)

0

5

10

15

20

25

C
om

pu
te

 /
C

om
m

un
ic

at
io

n

ResNet50 (Parameter Server)
ResNet50 (Ring Allreduce)
ViT H/14 (Parameter Server)
ViT H/14 (Ring Allreduce)

21 22 23 24

Number of Workers (log 2)

Figure 1.1: Compute to communication ratio for scaling the training of ResNet50
and ViT H/14 on NVIDIA GeForce RTX 3090 GPUs with 100 Gb/s (left) and
10 Gb/s (right) network bandwidths. The lower the ratio is, the more communi-
cation overhead the training process incurs.

such communication would have to happen multiple times per second. For ex-
ample, training a relatively small model like ResNet50 (97.5 MB) two iterations
per second on a 128-node cluster using Parameter Server (PS) [8] would require a
network bandwidth of 24.38 GB/s. This requirement is even larger than what a
high-end Mellanox Infiniband ConnectX-5 can provide, a 12.5 GB/s bandwidth.
Other topologies such as Ring Allreduce (RA) [9] require less bandwidth but
require more network hops.

Figure 1.1 shows the compute-to-communication ratio of training ResNet50
and ViT H/14 (2.5 GB) using PS and RA with different network bandwidth on
A100 GPUs. Communication quickly dominates iteration time in both cases as
the number of workers increases. This phenomenon is especially pronounced when
the network bandwidth is scarce. Furthermore, ViT can result in more than 10×
lower training efficiency compared to ResNet50 due to heavier communication
costs even with large network bandwidth. This result indicates the mounting
pressure on network communication as ML models become ever larger.

As a result, many techniques have been proposed to accelerate distributed
ML training (§2.2), such as fine-grained pipelining [10, 11], model compres-
sion [12, 13, 14], and gradient compression [15, 16, 17]. This work focuses on
gradient compression, which reduces the amount of network traffic by applying
lossy compression on gradients before they are transmitted. Nevertheless, most
of those methods are composable, e.g., applying both gradient compression and

with each model parameter (for computing gradient momentum), also need to be synchronized.

2

 Server 0

CPUs
GPUs

 SmartNIC

100 GbE

100 GbE
Switch

 Server 1

CPUs

 SmartNIC

GCOW
100 GbE

GCOW

GPUs

Figure 1.2: System overview of gCow.

fine-grained pipelining at the same time.

1.2 Gaps

Over the past years, many gradient compression methods have been proposed
(e.g., [18, 19, 16, 15, 20]). They can achieve compression ratios over 100×, thereby
reducing the network traffic and in turn, speeding up distributed training sub-
stantially. However, four major gaps (Gs) in existing methods need to be filled
in order to facilitate practical adoption of gradient compression methods:

G1: Existing GPU-based gradient compression methods contend precious resources
with gradient computation, completely blocking the backward pass [21], and
therefore, making overlapping gradient communication with compute infeasible.

G2: The interval of time for gradient compression methods to process large amounts
of gradient data is at the sub-second level, demanding extremely high through-
put. However, previous methods typically fail to meet such stringent perfor-
mance requirements [21], leading to poor scalability and the waste of network
bandwidth.

G3: Most of existing methods are compatible with certain cluster topologies (e.g.,
centralized parameter server or decentralized all reduce), restricting their appli-
cability and usability.

G4: While the effectiveness of gradient compression depends on the workloads, exist-
ing methods are static. Consequently, they tend to perform well only for specific
models and downstream tasks [18, 16], while suffering substantial performance
degradation for other workloads.

3

1.3 Contributions

To address these limitations, we propose gCow, a hardware accelerator that
can be integrated with FPGA-based SmartNICs attached directly to GPUs for
gradient Compression On the Wire (Fig. 1.2). Specifically, we make the following
main contributions:

C1. We explore the use and characterize the effect of a new lossy compression method
ZFP [22] in the context of gradient compression.

C2. We implement gCow on as an open-source2, easy-to-use high-level synthesis
library for FPGAs, designed to necessitate minimal application-level modifica-
tions from users and allowing the overlap between gradient computation with
communication (G1).

C3. By leveraging both a global dataflow pipeline and local parallelism, gCow can
saturate 100Gb network bandwidth, achieving throughput comparable to exist-
ing register transfer level (RTL) counterparts [23, 24, 25, 26](G2).

C4. gCow is platform- and topology-agnostic, compatible with any collective com-
munication primitives (G3).

C5. gCow empowers users with several tuning options to tailor the compression
algorithm to specific workloads, striking a desired balance between model quality
and training speedup (G4).

1.4 Scope

As a proof-of-concept, we outline the scope of this work to ensure timeliness and
feasibility. Firstly, we defer the implementation of gCow’s software driver suite
for future work. While this task requires substantial engineering effort, it offers
comparatively fewer research insights. Consequently, we postpone end-to-end
testing at this stage. Nevertheless, we underscore the importance of showcasing
end-to-end performance through validated performance models parameterized
by real system measurements. Secondly, this thesis concentrates on investigating
the feasibility of utilizing the ZFP CODEC for bump-in-the-wire (BITW) gra-
dient compression, with the goal of optimizing throughput to achieve line rate.
Therefore, while creating the necessary interfaces to the SmartNIC, we defer the
integration with specific types of devices for future work, since such an integra-
tion would also entail developing handshaking protocols and traffic classification
within the SmartNIC. Furthermore, although gCow can potentially be applied
to various other applications such as model-parallel paradigms, asynchronous

2gCow is available at https://github.com/fpgasystems/gcow

4

https://github.com/fpgasystems/gcow

training, or even additional forms of model compression, we focus solely on ex-
ploring its application in gradient compression within a data-parallel scheme in
this study. We leave the exploration of other potential use cases for future re-
search endeavors.

5

Chapter 2

Background

In this section, we briefly introduce some background knowledge as well as related
work.

2.1 Distributed ML Training

Parallel Training Schemes. There are broadly two categories of distributed
training schemes, namely, data and model parallelisms (Fig. 2.1). Each of the
two training schemes can be either synchronous or asynchronous. Although here
we focus on synchronous data parallel training only, the compression technique
studied in this work can be applied to other schemes as well.

There are two commonly used cluster topologies in data parallelism: cen-
tralized Parameter Server (PS) and decentralized Allreduce. In PS, the training
dataset is split into shards distributed equally among N workers. The entire ML
model of size P is replicated N times. Each of the N workers will hold one such
replica of size P . The workers in the cluster operate in lock steps — at each
iteration, each worker trains their local replica on one batch of their local data
shards and computes local gradients during backward pass. Instead of updat-
ing the local replicas using the computed gradients as what single-node training
would do, the workers will first push their local gradients of size P to the head
node for synchronization. Upon receiving the gradients from all workers (N · P
gradient values in total), the head node will aggregate the gradient values and
then broadcast the averaged gradients to all N workers. After updating their
local model replicas with the received gradients from the head node, workers will
proceed to the next training step together.

Unlike PS, Allreduce architectures do not have a centralized head node aggre-
gating the gradient values at each iteration. Similar to PS, each worker holds one
of the N shards of the training dataset and trains their local replica of the model
on their local shards in lockstep. The main difference rests in the synchronization
step — workers synchronize their gradient values using the allreduce collective
operation instead of relying on centralized head nodes. The allreduce collective

6

Head Node

Local Gradients

Worker Node 1

Model Replica

Local Gradients

Dataset Shard 1

Worker Node 2

Model Replica

Local Gradients

Dataset Shard 2

Worker Node N

Model Replica

Local Gradients

Dataset Shard N

Training Dataset

pull/push

replicate

partition

Model

Worker Node N

Gradient Partition 1

Gradient Partition 2

Gradient Partition N

Worker Node 1

Gradient Partition 1

Gradient Partition 2

Gradient Partition N Worker Node 2

Gradient Partition 1

Gradient Partition 2

Gradient Partition N

Worker Node 1

Local Gradients

Worker Node 2

Local Gradients

Worker Node 2

Local Gradients

Worker Node 1

Local Gradients

Worker Node 2

Local Gradients

Worker Node 2

Local Gradients

Worker Node 1

Local Gradients

Worker Node 2

Local Gradients

Worker Node 2

Local Gradients

Worker Node 1

Local Gradients

Worker Node 2

Local Gradients

Worker Node 2

Local Gradients

Parameter Server Ring Allreduce

Sequential Allreduce

reduce
allreduce

send

receive

Concurrent Allreduce

Figure 2.1: Common data parallel training schemes.

operation can be achieved with different communication patterns, chief among
which are Sequential, Concurrent, and Ring Allreduce.

Sequential Allreduce (SA) synchronizes gradients by first executing a gather
collective operation on each worker sequentially, pulling (N − 1) · P gradients
from all other workers, and then each worker averages the gathered gradients
to update their local replicas. Instead of using a gather operation, Concurrent
Allreduce (CA) conducts an allgather collective operation, in which all workers
pull (N − 1) · P gradients from all other workers at the same time, demanding
N× more bandwidth than that of SA.

Ring Allreduce (RA) operates rather differently — each worker first splits
their local gradients into N buckets. Next, the worker of rank i will send its
i-th bucket of size (P/N) to the worker of (i + 1) and receive the (i − 1)-th

7

Data Parallel Training Scheme Compute Time Peak Network Bandwidth

Parameter Server O(1)O(1)O(1) O(N)
Concurrent Allreduce O(1)O(1)O(1) O(N2)

Ring Allreduce O(N) O(1)O(1)O(1)
Sequential Allreduce O(N) O(N)

Table 2.1: Costs of common data parallel training schemes.

Backward Pass (block i)
Compression (block i)

Backward Pass (block i+1)GPU
GPU

Backward Pass (block i)
Compression (block i)
Backward Pass (block i+1)

Compression (block i+1)
GPU
FPGA

Prior
Work

GCOW

Figure 2.2: Overlapping gradient computation and gradient compression.

gradient bucket of the worker of rank (i− 1). One training step requires (N − 1)
such communication rounds to synchronize gradient update among N workers.
Table 2.1 summarizes the costs of the abovementioned data parallel training
schemes. In Section 4.4, we study how gCow can potentially benefit the first
three schemes.

Overlapping Communication with Compute. One crucial technique com-
monly employed to reduce the cost of gradient computation is overlapping gra-
dient communication and its computation (Fig. 2.2). This technique can hide
part of the communication overhead behind the backward pass. To leverage this
method, the ML model is first split into several gradient buckets. In PyTorch,
for example, this splitting is a greedy process — users specify the desired bucket
size, and the framework will then greedily pack as many layers as it can meet the
size limit.1 Then, during the backward pass of gradient bucket i, the framework
synchronizes the gradient values of bucket (i − 1). Prior work [21, 27, 28] has
shown that overlapping the two can reduce training iteration time by almost 50%.
Unfortunately, existing GPU-based work does not allow such an overlap, since
gradient compression would contend with gradient computation for resources [21].

1https://pytorch.org/docs/stable/generated/torch.nn.parallel.
DistributedDataParallel.html

8

https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html
https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html

2.2 Accelerating Distributed ML Training

Many methods have been proposed to accelerate distributed ML training. Chief
among those are fine-grained pipelining in model parallel training, model com-
pression, and gradient compression. Fine-grained pipelining methods (e.g., [10,
11]) split one batch of training data into multiple training micro-batches and
schedule pipeline-paralleled model layers to train on different micro-batches in
a way that minimizes device idle time (i.e., the “bubbles” in training pipeline).
These methods can either be synchronous or asynchronous and are complemen-
tary to model/gradient compression methods. Model compression methods aim
to reduce the model size by quantizing (e.g., [29, 17]), pruning (e.g., [18, 20])
or sparsifying (e.g., [30, 31]) model parameters. These methods can greatly re-
duce model size, thereby reducing the amount of traffic for updating models on
workers. However, since such methods directly operate on the models, they typi-
cally incur heavy degradation in model quality [17, 30, 18]. Gradient compression
methods, on the other hand, reduce the amount of network traffic during the syn-
chronization phase by directly compressing transmitted gradients among model
replicas.

2.3 Gradient Compression Methods

Existing gradient compression methods are mainly GPU-based and can be broadly
categorized into two types, namely, gradient pruning and numerical quantization.
Typical gradient pruning methods include techniques such as gradient sparsifica-
tion/selection [18, 32, 20], which selectively transmit subsets of gradients (e.g.,
only 0.1% of all values), and low-rank approximation [19] replacing gradient ma-
trices with low-rank approximates. On the other hand, gradient quantization
methods employ numerical methods to quantize individual gradient values, re-
ducing the amount of storage required for each gradient.

Numerical quantization discretizes the real line into buckets. All numbers
that fall into a single bucket will be represented by a single number, e.g., the
average value of the bucket. The main difference between various quantization
methods primarily lies in the size distribution of the buckets. For instance, the
integer types in IEEE 754 standard splits the real line into equidistant buckets.
One can quantize 32-bit floating point gradients by directly casting them to 8-
bit or even 4-bit integers. A more refined approach would be using ML-specific
data types such as bfloat16 [33]. These data types typically prioritize numerical
range over precision, allocating more bits to exponent and reducing the number
of bits assigned to mantissa. To achieve much higher compression ratios, many
methods have been proposed to more aggressively reduce the number of bits used
to represent gradient values, such as 1-bit [16] and ternary [17] data types.

Unfortunately, several limitations in existing methods hinder their practical

9

adoption. Firstly, GPU-based gradient compression methods contend precious re-
sources with gradient computation, completely blocking the backward pass [21].
Secondly, the interval of time for gradient compression methods to process large
amounts of gradient data is at the sub-second level, demanding extremely high
throughput. However, previous methods typically fail to meet such stringent
performance requirements [21], leading to poor scalability and the waste of net-
work bandwidth. Thirdly, most of existing methods are compatible with certain
cluster topologies (e.g., centralized parameter server or decentralized all reduce),
restricting their applicability and usability. Lastly, while the effectiveness of gra-
dient compression depends on the workloads, existing methods are static. Con-
sequently, they tend to perform well only for specific models and downstream
tasks, while suffering substantial performance degradation for other workloads.

2.4 ZFP Lossy Compression

In this work, we explore a new compression and decompression algorithm (CODEC),
ZFP [22], in the context of gradient compression. This CODEC specializes in
compressing floating-point and integer arrays and facilitates high-throughput I/O
random access operations. ZFP features the ability to efficiently represent multi-
dimensional numerical data in memory. This feature is particularly valuable for
various computational tasks, such as differential equation solvers, data analysis,
and visualization, offering substantial reductions in memory consumption.

2.4.1 Key Features of ZFP

We choose ZFP as the CODEC of gCow for the following reasons. Firstly, this
CODEC is commutative, meaning that the order in which it is applied to batches
of input does not affect the final result. This feature is crucial for gCow to be
compatible with any cluster topologies that users may prefer (C4). Secondly,
ZFP is highly versatile, offering both a lossless configuration and several lossy
modes (§2.4.3). In contrast to existing methods that are mostly static, this
flexibility is crucial to allowing users to adapt gCow to their specific model-task
combinations (C5), trading off the loss in model quality and training speedup at
well. Thirdly, the CODEC was originally designed to mitigate data movement
(e.g., to and from disk, across the internet, between compute nodes, and even
through the memory hierarchy) for high-precision numerical use cases such as
physical simulations, scientific observations, and experiments. As a result, it can
achieve large compression ratios (5×–200× under the lossy modes and 1.5×–4× in
the lossless configuration), while providing certain error bounds [34]. Therefore,
theoretically speaking, the CODEC is able to substantially reduce the amount of
transmitted gradient data without sacrificing too much ML model quality.

10

2.4.2 CODEC Pipeline

While providing several appealing features (§2.4.1), ZFP is more complex than
existing gradient compression methods. Its CODEC pipeline consists of six
stages (Fig. 2.3a).

In the first stage Chunk (1), data of d ∈ (0, 4] dimensions is chunked into 4d

blocks. For example, a 2D matrix will result in a number of 4×4 blocks. In case
an axis of the matrix is not divisible by 4, zero paddings are added (Fig. 2.3b).
These blocks are the units of operations on which the CODEC will be applied
independently. In other words, each block goes through the following pipeline
stages separately. In the second stage Emax (2), block floating point transform
is applied to each block (Fig. 2.3c). In this stage, the maximum exponent of a
block is taken as the common exponent of all the values therein and is plainly
encoded (8 bits for single precision numbers and 11 bits for double precision).

In the third stage Float2Int (3), the mantissas of all the numbers are shifted
based on the common exponent and represented as 31-bit or 63-bit signed inte-
gers. Note that, when the range of a number is large, the remaining bits can be
truncated. In addition, if all the values in the block are zero or less than the
specified tolerance under the “fixed-accuracy” mode (§2.4.3), then a single zero-
bit is encoded to indicate that this is effectively an “empty” block that can be
directly expanded to zeros during decoding. Consequently, this is the first stage
that can cause precision loss. Nevertheless, this data format prioritizes numerical
ranges over precision, which adheres to existing the objectives of many existing
ML data formats such as bfloat16 [33].

The Decorrelate stage (4) is responsible for applying a near-orthogonal
transform, similar to the discrete cosine transform (DCT II) used by the JPEG
CODEC, on the block of signed integers, the mantissas, produced by the previous
stage. This process is also known as “decorrelation” or “whitening,” which aims to
remove correlations between the features or components of the data. This step is
commonly used in various CODECs, helping to reduce redundancy and improve
the efficiency of compression algorithms, such as those based on entropy coding
or transform coding. The decorrelation transform employed by ZFP is more
efficient than most alternatives such as DCT II and discrete wavelet transform
(DWT), since it can be implemented with a simple lifting scheme that consists
only of shift and add operations [22]. Next, the Reorder stage (5) is responsible
for ordering the mantissas based on their frequencies in ascending order. Such
an ordering is similar to the entropy encoding used in the CODEC of JPEG, in
which the pixel blocks are encoded from the upper-left corner to the lower right
corner in a zigzag manner. Intuitively, the coefficients of lower frequencies are
listed first, since they tend to have larger magnitudes (Fig. 2.3d left). In a spatial
sense, the Reorder stage will also order a 2D mantissa block with coordinates
(i, j) first by (i+ j) then by (i2 + j2).

11

Chunk Emax

Float2Int

DecorrelateReorder

Int2Unit

Bitplane

(a) CODEC pipeline.

Padding

4×4

Padding Padding

4×4 4×4

4×44×44×4

2D Gradient Matrix

block block block

block block block

(b) Chunk stage.

0

0

0

2+127

+ 1

+ 1

+ 1

2−129
8-bit exponent 23-bit mantissa

2e

0 0 + 1

+ 1

0 0 0

0 + 1

0 0

0 0

32-bit signed integer

2emax

0 0

0 0

0 0

0 0

0 0

0 0
emax

0 0

lost bits

(c) Emax stage.

1

x

y

xy

x2

y2

x2y2

MSB LSB

1 1

x

y

xy

x2

y2

x2y2

positive group test

n1=1

a bitplane

1

1

1

x

y

xy

x2

y2

x2y2

positive group test

n3=2

1

1

1

1

1

x

y

xy

x2

y2

x2y2

2 positive group tests

n5=6

1

1

1

1

1

1

x

y

xy

x2

y2

x2y2

the last positive group test

n8=7

(d) Reorder and Bitplane stages.

Figure 2.3: Inner working of the implemented numerical CODEC from ZFP.

12

The sixth stage, denoted as the Int2Uint phase (6), transforms the mantis-
sas from two’s complement signed integers into their corresponding negabinary
(base negative two) representation. This conversion process involves performing
one addition and one bitwise exclusive OR operation per integer. As negabinary
lacks a dedicated sign bit, the resulting integers are subsequently treated as un-
signed. In contrast to sign-magnitude representations, in negabinary, the leftmost
one-bit simultaneously signifies the sign and approximate magnitude of a num-
ber. Additionally, unlike two’s complement, negabinary representation results in
leading zeros for numbers with small magnitudes, irrespective of their sign, which
simplifies the encoding process.

In the last stage, Bitplane (7), is an embedded coding procedure that ex-
ploits the fact that the mantissa values in negabinary form produced by the
previous stage tend to have many leading zeros, which need to be explicitly en-
coded. Algorithm 1 specifies the details of the algorithm. This embedded coding
algorithm encodes the mantissas from the bitplane of MSBs to that of the LSBs,
using a technique called Group Test [35], a technique initially devised to check
groups of consolidated blood samples from large populations for infectious dis-
eases.

In the context of ZFP, the CODEC conducts group tests to check whether
a group of mantissas is greater than a significance threshold, instead of testing
every single mantissa one at a time. This process effectively translates to testing
whether the bits higher than the i-th bit of all the values in a group contain at
lease a one-bit (Fig. 2.3d right). Each group test splits the mantissas into two
groups, one in which all values are assumed to be having at least one non-zero bit
above the i-th bitplane and another group in which this property does not hold.
For each positive group test, a one-bit is encoded, and negative tests are flagged
by zeros. Consequently, the encodings contain both the flag bits of the group
tests and the actual data. Such group testing and splitting is done recursively
as groups become smaller and smaller until all values are either significant or
insignificant. In the case of the “Fixed-Rate Mode” (§2.4.3), a bit budget is
specified to stop the encoding/group testing once a certain number of bits have
been encoded. Therefore, this stage is also a potential source of precision loss.

To achieve the recursive group testing, the CODEC algorithm employs a
parameter n. It is accumulated from the encoding of the bitplanes of the MSBs to
that of the LSBs (line 12 and 17). Specifically, when encoding the i -th bitplane,
the i-th bits of the first n mantissas are estimated to be significant and are
encoded verbatim (line 8), while the bits of the rest mantissas are not and in
turn, needed to be further group-tested and potentially split into subgroups.

13

2.4.3 CODEC Modes

The lossy CODEC of ZFP [22] has three configurations, namely, fixed-rate, fixed-
accuracy, and fixed-precision modes.

Fixed-rate mode. In this mode, each block of 4d values are encoded using
a fixed number of bits (maxbits in Algorithm 1). The encoding process stops as
this threshold is reached. Since each block is an independent encoding unit, this
mode effectively limits the average number of bits, the “rate”, used for encoding
each number in a block, i.e., rate = maxbits/4b. For example, when rate is 8,
(128+8) bits will be used in total to encode a 2D block of 16 numbers, each of
which takes 8 bits on average. Note that, since a block at least requires 1 bit to
indicate whether the numbers in the block are all zero or not, it takes at least 9
bits to encode a block of single precision numbers and 12 bits for double precision
numbers of any supported dimensions.

Fixed-rate mode is essential for facilitating random access to encoding blocks
and is the primary mode utilized in implementing ZFP’s compressed arrays. It
also guarantees a predictable memory or storage footprint. However, it typically
yields lower accuracy per bit compared to the variable-rate but fixed-precision
and fixed-accuracy modes.

Fixed-precision mode. This mode does not promise to use the same number
of bits to encode every block. However, the number of encoded bitplanes, the
precision, is guaranteed and specified by maxprec in Algorithm 1. This mode is
preferred when relative error is more important than absolute error.

Fixed-accuracy mode. In this mode, all bit planes are encoded up to a
minimum bit plane number. However, it is important to note that the actual
minimum bit plane depends on the dimensionality d of the input. Variance
may occur since the inverse transform during decoding entails range expansion,
which varies based on the number of dimensions. This mode is controlled by
a “tolerance” parameter, which should be interpreted as the base-2 logarithm
of an absolute error tolerance. Specifically, for an uncompressed value, x, and
a reconstructed value, x̂, the absolute difference | x − x̂ | is guaranteed to be
at most 2× the tolerance value. It is worth mentioning that achieving error
tolerances smaller than machine epsilon relative to the largest value within a
block is infeasible. However, this error tolerance can be conservatively set to
ensure it is respected even for worst-case inputs (although it may not always be
optimally tight), particularly for 3D and 4D arrays. Similar to the fixed-precision
mode, the number of bits used per block may vary and is determined by the data
itself. Setting the tolerance to 0 enables near-lossless compression.

Notably, fixed-accuracy mode offers the highest quality, measured in terms of
absolute error, for a given compression rate, making it preferable when random
access to encoding blocks is not required.

14

2.4.4 Challenges of ZFP

While ZFP offers a range of powerful features such as versatile configurations,
high compression ratios, and error bounds under its lossy modes, it comes with
several critical limitations as well. Firstly, it employs a bit-level compression
CODEC, resulting in significantly lower throughput compared to other byte-level
CODECs and compression methods. Additionally, ZFP is inherently sequential,
both in terms of its staged global pipeline and individual stages. For instance, the
Bitplane stage (7) cannot be parallelized since the bitplanes must be encoded
one after another in order. Similarly, encodings must be emitted in the order
of their corresponding blocks, necessitating the ordering of stages involving I/O
(e.g., 1 and 7).

Consequently, while there have been several attempts to implement ZFP in
hardware (e.g., [24, 25, 36, 23]), they all require modifying the CODEC to make
it more parallelizable, and thereby increasing achievable throughput. There is
one hardware implementation [26] that adheres to the original CODEC, but it
was based on a low-end device and demonstrated insufficient throughput for our
purpose. Additionally, all existing works are implemented in RTL code, ren-
dering them difficult to extend and integrate with other system components.
Furthermore, although ZFP has demonstrated superior performance in scientific
applications such as physical simulation and compressing massive amount of col-
lected observation data, its applicability in gradient compression has yet to be
systematically studied.

To address the challenges associated with employing the ZFP CODEC for
line-rate gradient compression, we first characterize its performance in gradient
compression under different configurations (§3.1) and then build gCow (§3.2 and
§3.3), which achieves high throughput (§4) while preserving all original features
that ZFP has to offer.

15

Algorithm 1: Embedded Coding.
Input: Encoding stream s
Input: Array of mantissas in negabinary form ublock
Input: Number of mantissa values each block (= #bits/bitplane) num
Input: Bits per integer intbits
Input: Target precision maxprec
Input: Bit budget maxbits
Output: Number of encoded bits

/* Index of the least significant bitplane to be encoded. */
1 kmin← intbits > maxprec ? intbits−maxprec : 0;
2 bits← maxbits;
3 i, k,m, n← 0;
/* Encode one bitplane at a time. */

4 for k ← intbits downto kmin do
5 x← 0;

/* Transpose values to bitplanes. */
6 for i← 0 to (num− 1) do
7 x← x+ ((ublock[i]≫ k) & 1)≪ i;

/* Encode first n bits of bit plane verbatim. */
8 m← min(n, bits);
9 bits← bits−m;

10 Write m lower bits of x to s;
11 x← x≫ m;
12 while bits > 0 and n++ < num do
13 bits← bits− 1;
14 bit← x > 0 ? 1 : 0;
15 Write bit to s;
16 if bit ̸= 0 then

/* Possitive group test. */
17 while bits > 0 and n++ < num do
18 bits← bits− 1;
19 bit← LSB of x;
20 Write bit to s;
21 if bit ̸= 0 then

/* After encoding a 1, break out for another
group test. */

22 break;
23 x← x≫ 1;
24 else

/* Negative group test: only zero-bits left. */
25 break;
26 return maxbits − bits;

16

Chapter 3

System Design of gCow

In this chapter, we describe the system design of gCow. We first present the
characterization of ZFP in the context of ML gradient compression (§3.1). Then,
we show how we use the Kahn Process Network (KPN) programming paradigm
to construct a global dataflow pipeline among the CODEC stages (§3.2). To
further boost the throughput of gCow, we exploit block-level parallelism within
each processing stage (§3.3), making the dataflow system multi-rate. Finally, we
briefly touch upon other optimizations and the integration interface to existing
100 Gb/s SmartNICs (§3.4).

3.1 Characterization of ZFP

In Section 2.4.3, we introduced the three lossy modes of the ZFP CODEC, each
of which offers distinct features. Consequently, it is reasonable to expect that
these compression modes entail different tradeoffs in the context of gradient com-
pression.

3.1.1 Compression Ratio

As the effectiveness of compression CODECs varies depending on the workload,
we begin by examining the compression ratio of ZFP under the three lossy modes
in the context of gradient compression. To conduct this analysis, we extract the
gradient values of ResNet50 at 10 random training steps and compress them using
the ZFP CODEC.

The tuning spaces of the three modes are large, and enumerating all pos-
sible settings is infeasible. For instance, the accuracy parameter of the fixed-
accuracy mode can range from anywhere between 0 and 1e-15. Therefore, we
opt for four discrete configurations representing increasing levels of compression
strength: high, medium, low, and minimum. Specifically, for the fixed-precision
and fixed-rate modes, we explore four values: {4, 8, 16, 32} for both the preci-
sion and accuracy parameters, respectively. For the fixed-accuracy mode, we set

17

high medium low min
Compression Strength

0

25

50

75

100

125

150

175

200

C
om

pr
es

si
on

 R
at

io

19
0.7

5

48
.03

5.8
5

2.9
411

.78

6.5
3

3.4
6

1.7
912

.00

6.0
0

3.0
0

1.5
0

19
0.7

5

48
.03

5.8
5

2.9
411

.78

6.5
3

3.4
6

1.7
912

.00

6.0
0

3.0
0

1.5
0

19
0.7

5

48
.03

5.8
5

2.9
411

.78

6.5
3

3.4
6

1.7
912

.00

6.0
0

3.0
0

1.5
0

ZFP Modes
fixed-accuracy
fixed-precision
fixed-rate

high medium low min
Compression Strength

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 R
un

tim
e

C
os

t

0.2
0

0.3
4

0.6
0

0.8
7

0.2
1 0.2

4

0.5
6

0.8
1

0.0
5

0.3
8

0.6
2

1.0
0

0.2
0

0.3
4

0.6
0

0.8
7

0.2
1 0.2

4

0.5
6

0.8
1

0.0
5

0.3
8

0.6
2

1.0
0

0.2
0

0.3
4

0.6
0

0.8
7

0.2
1 0.2

4

0.5
6

0.8
1

0.0
5

0.3
8

0.6
2

1.0
0

Figure 3.1: (Left) Compression ratio of the three lossy modes of the implemented
CODEC from ZFP at four levels of compression strengths on gradients extracted
from ResNet50. (Right) Normalized runtime cost of the corresponding compres-
sion modes.

the accuracy target to {0.1, 1e-3, 1e-6, 1e-9} for the four levels of compression
strengths. These values were selected to yield roughly similar runtimes for the
three modes at the same compression levels. It is important to note that lower
compression strength leads to longer CODEC processing times, as more informa-
tion needs to be preserved during compression (Figure 3.1 right). Hence, there
exists an inherent tradeoff between information loss and CODEC runtime.

Furthermore, the fixed-accuracy model generally yields the highest compres-
sion ratio at roughly the same runtime cost (Figure 3.1 left). Its advantage
is increasingly pronounced as the compression strength becomes higher. The
compression ratios of the other two modes are mostly on par across the four
compression levels.

3.1.2 Workload-dependency of Compression Modes

To explore the effectiveness of the three lossy modes on different workloads1,
we vary both the ML model and training datasets. Specifically, we use two
models of different sizes and architectures, namely, ResNet50 (97.5 MB) based
on convolution and attention-based ViT H/14 (2.5 GB) [37]. Note that we use
the software implementation of the ZFP CODEC for the following experiments

1Workload here refers to a specific combination of ML model and training dataset.

18

high medium low min
Compression Strength

0

20

40

60

80

Te
st

 A
cc

ur
ac

y
[%

]

Compression Mode
fixed-precision
fixed-accuracy
fixed-rate

(a) ResNet50 performance on CI-
FAR10 with gradient compression us-
ing the ZFP CODEC.

high medium low min
Compression Strength

0

20

40

60

Te
st

 A
cc

ur
ac

y
@

 1
 [%

]

Compression Mode
fixed-precision
fixed-accuracy
fixed-rate

(b) ResNet50 performance on Ima-
geNet with gradient compression us-
ing the ZFP CODEC.

high medium low min
Compression Strength

0

20

40

60

80

Te
st

 A
cc

ur
ac

y
@

 1
 [%

]

Compression Mode
fixed-precision
fixed-accuracy
fixed-rate

(c) ViT H/16 performance on Ima-
geNet with gradient compression us-
ing the ZFP CODEC.

Figure 3.2: Characterization of ZFP CODEC in ML gradient compression. Dot-
ted lines indicate test performance without gradient compression.

since gCow currently does not have a driver, so end-to-end testing is infeasible
at the moment (§1.4). However, the CODEC implemented in gCow has been
carefully validated against the ZFP software implementation2, guaranteeing their
consistent output given the same input. Therefore, the following characterization
results also apply to our hardware implementation.

In Figure 3.2a, we train ResNet50 on CIFAR10 dataset [38] for 200 epochs
and evaluate the model performance with the ZFP CODEC under the three
compression modes. As compression strength reduces, the corresponding model
quality improves, and we can achieve the original accuracy at medium com-
pression strength under the fixed-accuracy and fixed-precision modes. These
two modes can achieve around 50× and 7× communication reduction respec-
tively at a medium compression level (Fig. 3.1). This result not only serves as
a validation of the applicability of the ZFP CODEC in the context of gradient
compression but also demonstrates its promising performance on par with prior
works [16, 18, 19, 20]. This result also implies that the three compression modes
demonstrate different tradeoffs at each compression level.

The model used in Figure 3.2b is still ResNet50, but it is trained on Ima-
geNet [39], one of the largest and most comprehensive image datasets. The model
is trained under each compression mode for 50 epochs. Firstly, the three com-
pression modes demonstrate a rather different tradeoff space compared to that
of CIFAR10. For instance, the worst-performing mode at the medium compres-
sion level changed from the fixed-precision mode to fixed-accuracy. Nevertheless,
at the low compression level, accuracy is able to match the model accuracy of

2https://github.com/LLNL/zfp (commit: fa1014f5e)

19

https://github.com/LLNL/zfp

A

B

P C

A B

P

C

a b

Figure 3.3: Example Kahn Process Network.

without applying gradient compression. Furthermore, another important obser-
vation is that high compression strength no longer works for ImageNet, which is
a much larger and harder downstream task compared to CIFAR10. This result
illustrates that the tradeoff space induced by the three compression modes is
task-dependent.

In Figure 3.2c, the model been trained is changed from ResNet50 to a much
larger one, ViT H/14. Similar to the result shown in Figure 3.2b, high com-
pression strength will cause the training process to diverge, leading to non-
usable models. The overall accuracy pattern resembles that of ResNet50 in that,
by slightly lifting the compression strength, model accuracy can reach the no-
compression level very quickly. For example, with a median compression strength
(which can reduce the communication overhead by around 50×), the model only
demonstrates approximately 3% performance degradation. Moverover, compared
to the result from ResNet50, ViT seems to be less sensitive and therefore more
robust to changes in gradient compression strength, which might be a result of
larger model capacity. Thus, the ML model quality induced by the different ZFP
modes is also model-dependent.

Given the above characterization, we can conclude that (1) the ZFP CODEC
has competitive performance in the context of gradient compression compared
to state-of-the-art methods, and (2) the three compression modes are workload-
dependent and induce different tradeoff spaces as workload varies. Hence, we
decide to support all three compression modes instead of only a subset of them
in building gCow.

3.2 Global Dataflow Pipeline

The staged CODEC of ZFP (Fig. 2.3a) greatly resembles a Kahn Process Network
(KPN) [40]. KPNs are the foundation of dataflow computation theory, where se-
quential processes represented by nodes running concurrently that communicate
through single-producer, single-consumer first in first out (FIFO) channels rep-
resented by edges (Fig. 3.3). These communication channels are assumed to be

20

max(A, B) P C
max(A, B) P C

max(A, B) P C
max(A, B) P C

max(A, B) P C

max(A, B) P C

max(A, B)
P
C

Critical Path

Critical Path

None-Dataflow

Dataflow

Figure 3.4: Dataflow can reduce the critical path of a computation graph.

infinite in size, thereby implying that read operations could be blocking but writes
are always non-blocking. The pieces of data passed from one stage to the next are
“tokens,” and once all required input tokens arrive, a node becomes “fireable.” All
nodes in the network are always in either of the two following states: (1) waiting
for required input tokens, or (2) running its computation to produce tokens for
the subsequent node(s).

Dataflow networks are a simpler and more practical implementation of KPNs.
They are mostly the same but have two notable differences. Firstly, unlike infi-
nite communication channels from the theoretical model of KPNs, nodes exchange
data through single-directional, finite first-in-first-out (FIFO) queues in dataflow
networks. Consequently, both read and write operations can be blocking. More-
over, the behaviors of nodes are required to be deterministic — the number of
tokens produced and consumed are supposed to be verified at compile time, mit-
igating issues such as deadlock. Not only does dataflow provide a deterministic
concurrency model based on message-passing and shared-nothing principles to
flexibly model parallel, iterative applications, but it also reduces the critical path
of the computation graph of the target application (Fig. 3.4).

To leverage the dataflow paradigm, we model the stages of the ZFP CODEC
as nodes in a computation graph, each operating independently and concur-
rently (Fig. 3.5). We merge the Reorder and the Int2Uint stages from the
original CODEC (Fig. 2.3a) into one stage, and Float2Int is renamed to Cast
for brevity. The tokens communicated between these nodes are the 4d blocks,
treated as individual operation units. Our dataflow system is implemented using
Vitis HLS, connecting nodes via a non-blocking stream interface. This global
pipeline improves the overall system throughput by approximately 5× (Fig. 4.1).
However, this design alone is insufficient for gCow to achieve the desired per-
formance, as the system throughput remains at the same level as the software

21

Chunk Emax Cast Decorrelate

ReorderBitplaneaggregator

await

fblock (relay)

emax

bemax bemax (relay)

iblock

iblock
(relay)bemax

(relay 2)

ublock

bemax (relay 3)

maxprec

write queues

finished

fblock

write
output buffers

(sequential)

Figure 3.5: Global dataflow pipeline of gCow. The values on the edges are
dataflow tokens passed among nodes. Blue nodes are the CODEC stages, and
those in orange and gray are I/O and auxiliary stages, respectively.

implementation. Given that the critical path of a dataflow system is determined
by the slowest node, we must identify the bottleneck stages in the CODEC and
exploit parallelism at the block level to further enhance throughput.

3.3 Local Block-level Parallelization

In the CODEC pipeline, each 4d block undergoes independent compression. As
a result, multiple blocks can be processed simultaneously without compromising
numerical precision. To enable this parallel operation, we can create K parallel
processing elements (PEs) within every dataflow node and increase the bandwidth
of all FIFO queues by a factor of K. This global strategy can ideally boost overall
system throughput by a factor of K. However, deploying this approach for the
CODEC implementation proves infeasible due to its complexity — it quickly
depletes FPGA routing resources. For instance, setting K = 64 causes routing
failures attributed to congestion on an AMD Alveo U250 FPGA [41], a high-end
data center accelerator card.

To address the resource constraints, we implement a multi-rate dataflow pipeline
in which nodes possess varying levels of parallelism and, in turn, different token
processing rates. Specifically, we adjust K based on the stage — introducing
Ki parallel PEs within the node of the i-th CODEC stage. This optimization
presents two primary challenges. Firstly, determining Ki necessitates a per-stage
throughput analysis. Secondly, varying processing rates among dataflow nodes
can easily lead to deadlocks, overflowing or exhausting the communication chan-
nels between stages. To prevent deadlocks, we carefully tune the depths of FIFO
queues between nodes to accommodate accumulated tokens, which could other-
wise fill up buffers and block the entire dataflow system. The current solution

22

 GCOW

GPUs Burst
Read

Chunk
PE

PE

PE

8×

Dispatcher

128×
32×

Emax

PE

PE

PE

PE

PEPCIe
Dispatcher

8× Cast
PE

PE

PE

Dispatcher

128×

Decorrelate
PE

PE

PE
8×

Dispatcher

128×

Reorder
PE

PE

128×

Bitplane
PE

PE

PE

PE

PE

PE

PE

128×

 Aggregator DispatcherBurst
Write

2×

512b
SmartNIC data

request

response

Figure 3.6: Overview of gCow implemented as a multi-rate dataflow system.

involves conducting performance analyses for each CODEC stage (Fig. 4.2). Since
the overall system performance is dictated by the worst-performing stage, we se-
lect Ki to ensure the i-th CODEC stage meets its throughput target without
utilizing excessive resources that could otherwise further improve performance.
Based on Ki and the processing rate of the corresponding stage, we determine
optimal FIFO buffer sizes between stages. This approach allows for more efficient
resource allocation to CODEC stages that appear as bottlenecks in the dataflow
network, enabling them to achieve higher degrees of block-level parallelism, while
mitigating the constraint on routing resources.

3.4 Other Optimizations and Interface to SmartNICs

In addition to the global dataflow network and local block-level parallelism, sev-
eral other optimizations have been implemented.

Concurrent Memory Access. Block RAMs (BRAMs) have limited num-
bers of available memory ports, supporting only one or two concurrent reads
and writes, which becomes a bottleneck for achieving high block-level paral-
lelism. Rather than utilizing block BRAMs for the parallel FIFO buffers between
dataflow nodes, we employ distributed LUT RAM. In this way, multiple PEs can

23

Write Request 0 Write Response 0
Write Request 1

Write Request 2

Write Request 127

512-Bit Encoding 0
512-Bit Encoding 1

512-Bit Encoding 2
Write Request 3 512-Bit Encoding 3

512-Bit Encoding 127

Write Response 1
Write Response 2

Write Response 3

Write Response 127

 Time

Figure 3.7: Pipelined burst memory writes, assuming two memory write ports
are available.

read from and write to the queues concurrently, attaining desired parallelism.

Burst Memory I/O. One caveat with Vitis Shell is that unaligned memory
access could significantly reduce achievable memory bandwidth and in turn, pre-
vent gCow from reaching line-rate performance. In fact, sequential accesses to
unaligned memory addresses could limit the memory bandwidth to as low as
approximately 25 Gb/s. To avoid this issue and maximize throughput, gCow
writes encodings to memory in bursts of 128 512-bit write operations3. A burst
of such writes is pipelined (Fig. 3.7), which can provide a theoretical throughput
of (512 × 250 MHz)/1 second ≈ 15 GB/s with a DDR memory. This design
not only makes sure that the memory accesses are of multiple of 64 bytes but
also let the Burst Write component (Fig. 3.6) expose a 512-bit FIFO stream in-
terface, making it compatible with existing FPGA-based SmartNICs and easier
to pipeline the packet transactions [42]. The request and response wires are
for handshakes with the SmartNIC to send TCP/IP packets through the 512-bit
data bus.

3512 bits is the maximum kernel interface bitwidth in Vitis HLS.

24

Chapter 4

Evaluation of gCow

This chapter presents a comprehensive evaluation of gCow, focusing on address-
ing the following key questions:

(1) How much speedup can the global dataflow design offer? (§4.1)

(2) How much speedup can block-level parallelism offer? (§4.2)

(3) How does gCow compare to other ZFP hardware accelerators and existing
GPU-based gradient compressors in terms of throughput? (§4.3)

(4) How much performance benefits can gCow provide for scaling out of dis-
tributed ML training with different cluster topologies? (§4.4)

In addressing the above evaluation questions, we describe analyses and ex-
perimental results across the specified sections to illustrate the effectiveness and
comparative performance of gCow within the context of ZFP hardware acceler-
ation and distributed ML training.

4.1 Speedup from Dataflow

To analyze the benefits of the dataflow network, we conduct evaluations com-
paring two versions of gCow: one implemented without a dataflow scheme and
another rewritten using a dataflow paradigm. For our evaluations, we utilize
exponentially distributed synthetic workloads devoid of zero values to maintain
a conservative assessment. Figure 4.1 shows that employing dataflow yields ap-
proximately a 5× speedup over the naive implementation, achieving a throughput
around 0.05 GB/s. This speedup is attributed to the global dataflow pipeline,
which substantially reduces the critical path (Fig. 3.6).

However, despite this performance improvement, this level of throughput does
not yet provide a competitive edge over the original ZFP CODEC, which is a
single-core software implementation of the ZFP CODEC running on Intel Xeon

25

Non-Dataflow Dataflow Software

0.01

0.02

0.03

0.04

0.05

0.06

Th
ro

ug
hp

ut
 [G

iB
/s

]

Figure 4.1: Dataflow design provides around 5× speedups over the non-dataflow
version.

Gold 6248 CPU @ 2.50 GHz. While demonstrating a larger variation in perfor-
mance, the software version can still outperform the naive dataflow implementa-
tion.

4.2 Speedup from Block-level Parallelism

Given that every 2d block of d-dimensional gradient values progresses through
the CODEC pipeline independently (§2.4.2), these blocks serve as the smallest
operation elements and parallel units. To improve throughput, we aim to leverage
block-level parallelism within each dataflow node. However, uniformly increasing
parallelism across all CODEC stages can quickly deplete the routing resources of
a high-end FPGA card (§3.3), causing prohibitive congestion.

To efficiently allocate limited onboard resources, we first identify bottleneck
stages by measuring the throughput of each CODEC stage individually. Fig-
ure 4.2 illustrates that three stages emerge as major bottlenecks: Emax, Cast, and
Bitplane. Consequently, we allocate more resources to these bottleneck stages
to achieve higher degrees of parallelism compared to other stages that can reach
the target throughput with fewer parallel PEs. To do so, we transition gCow
into a multi-rate dataflow network in which the i-th node contains Ki PEs based
on corresponding performance analysis. This approach balances resource alloca-
tion across stages, while ensuring all nodes in the network achieve the desired
throughput. Notably, certain CODEC stages (e.g., Reorder) are more amenable
to parallelization than others (e.g., Bitplane). While all other stages can reach
the performance target with the help of block-level parallelism, even with 128
parallel PEs, the final throughput of Bitplane is still slightly below the target
throughput as it is ultimately constrained by heavy I/O operations. Therefore,

26

Chunk Emax Cast DecorrelateReorder Bitplane
Compression Stage

0

2

4

6

8

10

12

14

Th
ro

ug
hp

ut
 [G

iB
/s

]

2.2
34

0.3
10

0.2
61

3.8
38

7.3
45

0.0
34

12.505 12.879

14.892 14.892 14.893

8.784
2.2

34

0.3
10

0.2
61

3.8
38

7.3
45

0.0
34

12.505 12.879

14.892 14.892 14.893

8.7848
PE

s

32
 P

Es 8
PE

s

8
PE

s

2
PE

s

12
8

PE
s

sequential
parallel

Figure 4.2: Speedup provided by using varying number of parallel PEs within
each dataflow node. The dotted line indicates the target throughput, i.e., the
100 Gb/s SmartNIC bandwidth.

Resource Usage (util%)

LUT 380,591 (19.6%)
Register 358,933 (10.4%)
BRAM 228.5 (8.5%)
DSP 441 (3.6%)
Power (W) 18.285

Table 4.1: Resource utilization and power of gCow.

two CODEC stages achieving the same level of throughput may require signifi-
cantly different numbers of PEs. Table 4.1 lists the power and resources used by
the final implementation of gCow on an AMD Alveo U250 data center card [41].

4.3 Comparing with Other ZFP Accelerators

This section compares gCow with existing ZFP-based hardware implementa-
tions and GPU-based gradient compressors. Firstly, we compare gCow with five
existing hardware accelerators for ZFP-based CODECs: ZFP-V [25], sZFP [23],
DE-ZFP [36], ZHW [26], and ZFPe [24] in Figure 4.3. Our evaluation dataset
and clock frequency are aligned with most of these works for a more intuitive
comparison, considering the challenges arising from variations in FPGA devices
used by these accelerators. Specifically, gCow is implemented on an AMD Alveo
U250 data center card, clocked at 250 MHz. This frequency is used by most of
the referenced works. We evaluate gCow on the SDRBench lossy compres-

27

ZFP-V
sZ

FP

DE-Z
FP

ZFPe*
ZHW

*

gC
OW

Pow
erS

GD

MSTop
-K

sig
nS

GD
0.0

2.5

5.0

7.5

10.0

12.5

15.0

Th
ro

ug
hp

ut
 [G

iB
/s

]

ZFP-based
CODEC

 Gradient
 Compressor (GPU)

Figure 4.3: Throughput comparison with existing hardware accelerators of ZFP-
based CODEC on the SDRBench lossy compression dataset [43]. Blue color
indicates that the corresponding implementation preserves all features that the
original ZFP CODEC has to offer. The GPU-based gradient compressors on the
right part are evaluated with ResNet50’s training.

sion dataset [43] for scientific computing, which is also the most commonly used
workload among these accelerators for evaluation. Notably, among the five ac-
celerators, only ZHW and gCow preserve all ZFP features (§2.4.1), whereas
others have modified the ZFP CODEC to enhance throughput. For instance,
DE-ZFP substitutes the Bitplane stage with a dictionary encoding algorithm
to boost throughput at the cost of lower compression rate. Furthermore, gCow
stands out as the sole HLS implementation, offering superior user-friendliness
and customization compared to RTL-based implementations of other accelera-
tors. Despite being implemented in HLS, gCow achieves an average throughput
of around 7 GiB/s, which is comparable to ZFP-V and sZFP, outperforming
DE-ZFP, ZHW, and ZFPe.

In the right part of Figure 4.3, we compare gCow with GPU-based gradient
compressors —PowerSGD [19], MSTop-K [18, 20], and signSGD [44] — using
their reported throughput values during the training of ResNet50. gCow exhibits
significantly higher throughput than PowerSGD and MSTop-K, and matches the
performance level of signSGD. Note that signSGD’s simplicity in algorithm comes
at the expense of heavier model performance loss.

These comparisons highlight gCow’s competitive performance against both
existing accelerators of ZFP-based CODEC and GPU-based gradient compres-
sors, positioning it as a promising solution for efficient and scalable machine
learning model training.

28

20 23 26 29

Number of Workers

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ite
ra

tio
n

Ti
m

e
[s

]

Parameter Server

20 23 26 29

Number of Workers

Concurrent Allreduce

20 23 26 29

Number of Workers

Ring Allreduce

compression + no overlap
compression + overlap
no compression + no overlap
no compression + overlap

(a) Scaling the training of ResNet50.

20 23 26 29

Number of Workers

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ite
ra

tio
n

Ti
m

e
[s

]

Parameter Server

20 23 26 29

Number of Workers

Concurrent Allreduce

20 23 26 29

Number of Workers

Ring Allreduce

compression + no overlap
compression + overlap
no compression + no overlap
no compression + overlap

(b) Scaling the training of ViT H/14.

Figure 4.4: Scaling ML training with gCow in simulation. (no) compression:
whether or not to use gCow to compress gradient values for worker synchro-
nization. (no) overlap: whether or not to overlap gradient computation with
communication.

29

Parameter Value

Local batch size 256
ResNet50

Compute time 300 ms
gradient buckets 4

ViT H/14
Compute time 800 ms
gradient buckets 11

gCow
Compression ratio 50
Throughput 10 GiB/s

Table 4.2: Simulation configuration parameterized by the measurements from
executions on NVIDIA A100 GPU and previous evaluation of gCow.

4.4 Scaling out ML Training with gCow

In this section, we explore the potential benefits of using gCow to scale out
ML training to thousands of nodes using simulation. To this end, we employ a
validated performance model [21] parameterized by the measurements that we
obtained from real-world executions on NVIDIA A100 GPUs.

In Figure 4.4, we vary the number of workers from 2 to 1024 and plot the
duration per training iteration. In these experiments, we focus on the impact of
network traffic going through the NIC and ignore the intra-node communication
among GPUs within the same worker. We employ two models of drastically
different sizes and architectures, namely ResNet50 and ViT H/14. Their runtime
was measure on NVIDIA A100 GPUs on the ImageNet dataset [39] with a batch
size of 256 for both models. The compression ratio of gCow is set to 50 (Fig. 3.1).
Detailed simulation parameters are summarized in Table 4.2.

Firstly, both the small (ResNet50) and large (ViT H/14) models can greatly
benefit from gCow when scaled out to large numbers of workers using cluster
topologies that are constrained by network bandwidth, i.e., PS and CA (Ta-
ble 2.1). Specifically, for PS, gCow can provide 7.5× and 14.8× speedup on
average for ResNet50 and ViT H/14, respectively. For CA, the speedups are
18× and 22×. Hence, the higher bandwidth the training scheme requires, the
more speedup gCow can provide. However, in the case of RA, whose bandwidth
requirement scales linearly with the number of worker nodes in the cluster, the
speedup is less significant — gCow provides no speedup for ResNet50 and 1.2×
speedups on average for ViT H/14.

Furthermore, overlapping gradient communication and computation has demon-
strated its paramount role. Specifically, gCow can provide an additional 1.3×
speedup for ResNet50 across the three training schemes, compared to without

30

the overlap. Notably, gCow can make PS scale even better with the help of the
overlap using PS than RA. The benefit of such compute-communication overlap
is similarly pronounced for lager models like ViT H/14, offering an additional
1.6× speedup on average. However, as model size increases, gCow can no longer
bridge the performance gap between the training schemes that are constrained
by bandwidth (PS and CA) and those are not (RA). In other words, choosing a
training scheme whose bandwidth requirement scales linearly with the size of the
cluster is still the most important consideration in training models of hundreds
of millions of parameters and beyond, even when gradient compression methods
are employed.

31

Chapter 5

Future Work and Conclusion

Future Work. While gCow provides a rich set of configurations (§3.1) that
allow the users to more flexibly navigate the tradeoff space, balancing speedup
and model quality, as well as adapting the CODEC to specific workloads, this
freedom can also lead to the difficulty of choosing an appropriate configuration
given a model-dataset combination. Therefore, an automatic tuning method
for the desired configuration of the CODEC is imperative. Secondly, one ma-
jor limitation of gCow is its high resource requirements (Table 4.1). Although
resources are allocated efficiently based on the degrees of required parallelism
of each CODEC stage in the dataflow network (§4.2 and §3.3), gCow still re-
quires almost 10× more FPGA resources compared to existing accelerators of
ZFP-based CODEC [26, 36]. Furthermore, although this work focuses on data
parallel training (§2.1), gCow is versatile and agnostic to the workloads as well
as the training platform. For example, prior work [45] has shown that various
model parallelisms possess different characteristics when it comes to gradient
compression. Thus, other potential applications of gCow in for example, tensor
and pipeline parallel training should be further explored. Additionally, this work
does not consider other commonly used techniques such as momentum SGD with
error feedback and correction [15, 46, 16], local gradient accumulation [15, 47],
and adding warmup period at the start of training [15, 48, 49, 19]. These tech-
niques could further improve the performance of gCow. Moreover, although
integrating SmartNIC with GPUs have been proposed, existing work is limited
in usability and compatibility with many mainstream devices [42]. As a result,
improving SmartNIC-GPU integration is an important step forward. Last but
not least, gCow currently applies the same CODEC configuration to all layers
of the model. Varying compression configuration for different layers or model
components is a promising future direction.

Conclusion. This work presents gCow, a novel framework enabling gradient
compression on FPGA-based SmartNICs for distributed ML training. We are
the first to demonstrate the effectiveness of the ZFP CODEC as a gradient com-
pressor. Our characterizations show that ZFP achieves competitive performance

32

compared to existing methods, balancing compression ratio and accuracy loss ef-
fectively. Specifically, gCow can preserve full model accuracy on CIFAR10 and
incurs only a 2–3% top-1 accuracy degradation on ImageNet, while reducing net-
work communication overhead by 50×. Moreover, gCow inherits all the versatile
features of the ZFP CODEC, allowing users to adapt the CODEC to various ML
model types and downstream tasks. Additionally, implemented in HLS, gCow
provides superior extensibility and usability compared to other RTL counter-
parts. By leveraging a global dataflow network and local block-level parallelism,
gCow achieves near line-rate throughput of around 7 GiB/s on average. This
performance is comparable to or exceeds that of existing hardware accelerators
for ZFP-based CODECs and GPU-based gradient compressors.

Through a validated performance model for distributed ML training, we
demonstrate that, when scaling out to large numbers of workers using data-
parallel paradigms, gCow can accelerate the training of ResNet50 and ViT H/14
by 7.5–18× and 14.8–22×, respectively. Furthermore, unlike existing GPU-based
gradient compressors, gCow allows for overlapping gradient communication with
its computation during the backward pass, resulting in additional speedups of
1.3× and 1.6× on average for ResNet50 and ViT H/14, respectively. Despite
several remaining opportunities and challenges, gCow demonstrates promising
potential as a solution to achieving line-rate gradient compression on FPGA-
based SmartNICs for distributed ML training.

33

References

[1] S. Smith, M. Patwary, B. Norick, P. LeGresley, S. Rajbhandari, J. Casper,
Z. Liu, S. Prabhumoye, G. Zerveas, V. Korthikanti et al., “Using deepspeed
and megatron to train megatron-turing nlg 530b, a large-scale generative
language model,” arXiv preprint arXiv:2201.11990, 2022.

[2] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat et al., “Gpt-4 tech-
nical report,” arXiv preprint arXiv:2303.08774, 2023.

[3] G. Team, R. Anil, S. Borgeaud, Y. Wu, J.-B. Alayrac, J. Yu, R. Soricut,
J. Schalkwyk, A. M. Dai, A. Hauth et al., “Gemini: a family of highly
capable multimodal models,” arXiv preprint arXiv:2312.11805, 2023.

[4] Y. Bahri, E. Dyer, J. Kaplan, J. Lee, and U. Sharma, “Explaining neural
scaling laws,” arXiv preprint arXiv:2102.06701, 2021.

[5] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child,
S. Gray, A. Radford, J. Wu, and D. Amodei, “Scaling laws for neural lan-
guage models,” arXiv preprint arXiv:2001.08361, 2020.

[6] J. Hestness, S. Narang, N. Ardalani, G. Diamos, H. Jun, H. Kianinejad,
M. M. A. Patwary, Y. Yang, and Y. Zhou, “Deep learning scaling is pre-
dictable, empirically,” arXiv preprint arXiv:1712.00409, 2017.

[7] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale et al., “Llama 2: Open
foundation and fine-tuned chat models,” arXiv preprint arXiv:2307.09288,
2023.

[8] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,
J. Long, E. J. Shekita, and B.-Y. Su, “Scaling distributed machine learn-
ing with the parameter server,” in 11th USENIX Symposium on operating
systems design and implementation (OSDI 14), 2014, pp. 583–598.

[9] A. Sergeev and M. Del Balso, “Horovod: fast and easy distributed deep
learning in tensorflow,” arXiv preprint arXiv:1802.05799, 2018.

[10] Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen, M. Chen, H. Lee,
J. Ngiam, Q. V. Le, Y. Wu et al., “Gpipe: Efficient training of giant neural
networks using pipeline parallelism,” Advances in neural information pro-
cessing systems, vol. 32, 2019.

34

[11] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. Devanur, G. R.
Ganger, P. B. Gibbons, and M. Zaharia, “Pipedream: generalized pipeline
parallelism for dnn training,” in Proceedings of the 27th ACM symposium on
operating systems principles, 2019, pp. 1–15.

[12] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and
K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer parameters
and< 0.5 mb model size,” arXiv preprint arXiv:1602.07360, 2016.

[13] J. Kim, S. Park, and N. Kwak, “Paraphrasing complex network: Network
compression via factor transfer,” Advances in neural information processing
systems, vol. 31, 2018.

[14] Y. Idelbayev and M. A. Carreira-Perpinán, “A flexible, extensible software
framework for model compression based on the lc algorithm,” arXiv preprint
arXiv:2005.07786, 2020.

[15] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, “Deep gradient com-
pression: Reducing the communication bandwidth for distributed training,”
arXiv preprint arXiv:1712.01887, 2017.

[16] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “1-bit stochastic gradient
descent and its application to data-parallel distributed training of speech
dnns,” in Fifteenth annual conference of the international speech communi-
cation association, 2014.

[17] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li, “Terngrad:
Ternary gradients to reduce communication in distributed deep learning,”
Advances in neural information processing systems, vol. 30, 2017.

[18] S. Shi, X. Zhou, S. Song, X. Wang, Z. Zhu, X. Huang, X. Jiang, F. Zhou,
Z. Guo, L. Xie et al., “Towards scalable distributed training of deep learning
on public cloud clusters,” Proceedings of Machine Learning and Systems,
vol. 3, pp. 401–412, 2021.

[19] T. Vogels, S. P. Karimireddy, and M. Jaggi, “Powersgd: Practical low-rank
gradient compression for distributed optimization,” Advances in Neural In-
formation Processing Systems, vol. 32, 2019.

[20] S. Shi, Q. Wang, K. Zhao, Z. Tang, Y. Wang, X. Huang, and X. Chu, “A
distributed synchronous sgd algorithm with global top-k sparsification for
low bandwidth networks,” in 2019 IEEE 39th International Conference on
Distributed Computing Systems (ICDCS). IEEE, 2019, pp. 2238–2247.

[21] S. Agarwal, H. Wang, S. Venkataraman, and D. Papailiopoulos, “On the
utility of gradient compression in distributed training systems,” Proceedings
of Machine Learning and Systems, vol. 4, pp. 652–672, 2022.

35

[22] P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE transac-
tions on visualization and computer graphics, vol. 20, no. 12, pp. 2674–2683,
2014.

[23] G. Sun, S. Kang, and S.-W. Jun, “Burstz: a bandwidth-efficient scientific
computing accelerator platform for large-scale data,” in Proceedings of the
34th ACM International Conference on Supercomputing, 2020, pp. 1–12.

[24] S.-M. Lim and S.-W. Jun, “Mobilenets can be lossily compressed: Neural
network compression for embedded accelerators,” Electronics, vol. 11, no. 6,
p. 858, 2022.

[25] G. Sun and S.-W. Jun, “Zfp-v: Hardware-optimized lossy floating point com-
pression,” in 2019 International Conference on Field-Programmable Technol-
ogy (ICFPT). IEEE, 2019, pp. 117–125.

[26] M. Barrow, Z. Wu, S. Lloyd, M. Gokhale, H. Patel, and P. Lindstrom, “Zhw:
A numerical codec for big data scientific computation,” in 2022 International
Conference on Field-Programmable Technology (ICFPT). IEEE, 2022, pp.
1–9.

[27] P. Damania, S. Li, A. Desmaison, A. Azzolini, B. Vaughan, E. Yang,
G. Chanan, G. J. Chen, H. Jia, H. Huang et al., “Pytorch rpc: Distributed
deep learning built on tensor-optimized remote procedure calls,” Proceedings
of Machine Learning and Systems, vol. 5, 2023.

[28] Y. Zhao, A. Gu, R. Varma, L. Luo, C.-C. Huang, M. Xu, L. Wright, H. Sho-
janazeri, M. Ott, S. Shleifer et al., “Pytorch fsdp: experiences on scaling
fully sharded data parallel,” arXiv preprint arXiv:2304.11277, 2023.

[29] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “Qsgd:
Communication-efficient sgd via gradient quantization and encoding,” Ad-
vances in neural information processing systems, vol. 30, 2017.

[30] H. Wang, S. Sievert, S. Liu, Z. Charles, D. Papailiopoulos, and S. Wright,
“Atomo: Communication-efficient learning via atomic sparsification,” Ad-
vances in neural information processing systems, vol. 31, 2018.

[31] J. Wangni, J. Wang, J. Liu, and T. Zhang, “Gradient sparsification for
communication-efficient distributed optimization,” Advances in Neural In-
formation Processing Systems, vol. 31, 2018.

[32] X. Ye, P. Dai, J. Luo, X. Guo, Y. Qi, J. Yang, and Y. Chen, “Accelerating cnn
training by pruning activation gradients,” in Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part XXV 16. Springer, 2020, pp. 322–338.

36

[33] D. Kalamkar, D. Mudigere, N. Mellempudi, D. Das, K. Banerjee, S. Avancha,
D. T. Vooturi, N. Jammalamadaka, J. Huang, H. Yuen et al., “A study of
bfloat16 for deep learning training,” arXiv preprint arXiv:1905.12322, 2019.

[34] J. Diffenderfer, A. L. Fox, J. A. Hittinger, G. Sanders, and P. G. Lindstrom,
“Error analysis of zfp compression for floating-point data,” SIAM Journal
on Scientific Computing, vol. 41, no. 3, pp. A1867–A1898, 2019.

[35] E. S. Hong and R. E. Ladner, “Group testing for image compression,” IEEE
Transactions On image processing, vol. 11, no. 8, pp. 901–911, 2002.

[36] M. Habboush, A. H. El-Maleh, M. E. Elrabaa, and S. AlSaleh, “De-zfp:
An fpga implementation of a modified zfp compression/decompression algo-
rithm,” Microprocessors and Microsystems, vol. 90, p. 104453, 2022.

[37] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Un-
terthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al., “An image
is worth 16x16 words: Transformers for image recognition at scale,” arXiv
preprint arXiv:2010.11929, 2020.

[38] A. Krizhevsky and G. Hinton, “Convolutional deep belief networks on cifar-
10,” Unpublished manuscript, vol. 40, no. 7, pp. 1–9, 2010.

[39] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE Conference on
Computer Vision and Pattern Recognition, 2009, pp. 248–255.

[40] K. Gilles, “The semantics of a simple language for parallel programming,”
Information processing, vol. 74, no. 471-475, pp. 15–28, 1974.

[41] AMD, “Alveo u250 data center accelerator card,” 2024. [Online]. Available:
https://www.xilinx.com/products/boards-and-kits/alveo/u250.html

[42] Z. Wang, H. Huang, J. Zhang, F. Wu, and G. Alonso, “{FpgaNIC}: An
{FPGA-based} versatile 100gb {SmartNIC} for {GPUs},” in 2022 USENIX
Annual Technical Conference (USENIX ATC 22), 2022, pp. 967–986.

[43] K. Zhao, S. Di, X. Lian, S. Li, D. Tao, J. Bessac, Z. Chen, and F. Cappello,
“Sdrbench: Scientific data reduction benchmark for lossy compressors,” in
2020 IEEE international conference on big data (Big Data). IEEE, 2020,
pp. 2716–2724.

[44] J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar,
“signsgd: Compressed optimisation for non-convex problems,” in Interna-
tional Conference on Machine Learning. PMLR, 2018, pp. 560–569.

[45] S. Bian, D. Li, H. Wang, E. P. Xing, and S. Venkataraman, “Does
compressing activations help model parallel training?” arXiv preprint
arXiv:2301.02654, 2023.

37

https://www.xilinx.com/products/boards-and-kits/alveo/u250.html

[46] S. P. Karimireddy, Q. Rebjock, S. Stich, and M. Jaggi, “Error feedback fixes
signsgd and other gradient compression schemes,” in International Confer-
ence on Machine Learning. PMLR, 2019, pp. 3252–3261.

[47] S. Athlur, N. Saran, M. Sivathanu, R. Ramjee, and N. Kwatra, “Varuna:
scalable, low-cost training of massive deep learning models,” in Proceedings
of the Seventeenth European Conference on Computer Systems, 2022, pp.
472–487.

[48] J. Ma and D. Yarats, “On the adequacy of untuned warmup for adaptive
optimization,” in Proceedings of the AAAI Conference on Artificial Intelli-
gence, vol. 35, no. 10, 2021, pp. 8828–8836.

[49] A. Gotmare, N. S. Keskar, C. Xiong, and R. Socher, “A closer look at deep
learning heuristics: Learning rate restarts, warmup and distillation,” arXiv
preprint arXiv:1810.13243, 2018.

38

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Gaps
	1.3 Contributions
	1.4 Scope

	2 Background
	2.1 Distributed ML Training
	2.2 Accelerating Distributed ML Training
	2.3 Gradient Compression Methods
	2.4 ZFP Lossy Compression
	2.4.1 Key Features of ZFP
	2.4.2 CODEC Pipeline
	2.4.3 CODEC Modes
	2.4.4 Challenges of ZFP

	3 System Design of gCow
	3.1 Characterization of ZFP
	3.1.1 Compression Ratio
	3.1.2 Workload-dependency of Compression Modes

	3.2 Global Dataflow Pipeline
	3.3 Local Block-level Parallelization
	3.4 Other Optimizations and Interface to SmartNICs

	4 Evaluation of gCow
	4.1 Speedup from Dataflow
	4.2 Speedup from Block-level Parallelism
	4.3 Comparing with Other ZFP Accelerators
	4.4 Scaling out ML Training with gCow

	5 Future Work and Conclusion
	References

